КАТАЛОГ 2011

Реле для печатного монтажа - Краткий обзор

		Номинальный ток	Кол-во контактов	Возможности	Розетки
	30 Серия	2 A	2 CO	Субминиатюрные двухрядные реле 2 группы перекидных контактов Возможность коммутации низкоуровневых сигналов Субминиатырные: промышленный стандарт корпус с двухрядным расположением выводов Чувствительная катуша DC: 200 mW Влагонепрницаемые: RT III	
	32 Серия	6 A	$\begin{aligned} & 1 \mathrm{CO} \\ & 1 \mathrm{NO} \end{aligned}$	Субминиатюрные реле для печатного монтажа - 1 перекидной контакт или 1 нормально открытый контакт - Субминиатюрнан, низкопрофильная плата - Чувствительная катушка DC: 200 mW - Влагонепроницаемые: RT III	
$\stackrel{0}{0}$	34 Серия	6 A	$\begin{aligned} & 1 \mathrm{CO} \\ & 1 \mathrm{NO} \end{aligned}$	Ультратонкие реле для печатного монтажа - Чувствительная катушка DC: 170 mW - Ширина 5 мм - Изоляция катушка-контакты 6kV (1.2/50 мкс)	
		$\begin{aligned} & 0.1 \mathrm{~A} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 \text { выход } \\ & \text { (SSR) } \end{aligned}$	Ультратонкие твердотельные реле для печатного монтажа - Чувствительный входной контур DC - Ширина 5 мм - Бесшумные, скоростное переключение и большая долговечность	
	36 Серия	10 A	$\begin{aligned} & 1 \mathrm{CO} \\ & 1 \mathrm{NO} \end{aligned}$	Реле для печатного монтажа - 1 перекидной контакт или 1 нормально открытый контакт - Миниатюрный корпус "Кусочек сахара" - Катушка DC: 360 mW - Влагозащита: RT III	
40 Серия		$\begin{aligned} & 12 \mathrm{~A} \\ & 16 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 \mathrm{CO} \\ & 1 \mathrm{NO} \end{aligned}$	Миниатюрные реле для печатного монтажа - Катушки DC - 8 мм, Изоляция катушка-контакты 6kV (1.2/50 мкс) - Влагозащита: RT II стандарт - Выводы с шагом 3.5 или 5 мм	
		$\begin{aligned} & \hline 10 \mathrm{~A} \\ & 16 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 \mathrm{CO} \\ & 1 \mathrm{NO} \end{aligned}$	Миниатюрные реле для печатного монтажа / розетки - Катушки DC и AC - 8 мм, Изоляция катушка-контакты 6kV (1.2/50 мкс) - Выводы с шагом 3.5 или 5 мм	
		8 A	$\begin{aligned} & 2 \mathrm{CO} \\ & 2 \mathrm{NO} \end{aligned}$		
41 Серия		$\begin{aligned} & \hline 12 \mathrm{~A} \\ & 16 \mathrm{~A} \end{aligned}$	1 CO	Низкопрофильные электромеханические реле для печатного монтажа - Низкий профиль, высота 15.7мм - Катушки DC: 400 mW - 8 мм, Изоляция катушка-контакты 6kV (1.2/50 мкс) - Влагозащита: RT II стандарт, (RT III опционально)	93 Серия 95 Серия
		8 A	2 CO		
		$3 \mathrm{~A}$	$\begin{aligned} & 1 \text { выход } \\ & \text { (SSR) } \end{aligned}$	Низкопрофильные твердотельные реле для печатного монтажа - Низкий профиль, высота 15.7 мм - Чувствительный входной контур DC - Бесшумные, скоростное переключение и большая долговечность	
	43 Серия	$\begin{aligned} & 10 \mathrm{~A} \\ & 16 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 \mathrm{CO} \\ & 1 \mathrm{NO} \end{aligned}$	Низкопрофильные реле для печатного монтажа - Низкий профиль, высота 15.4 мм - Чувствительная катушка DC: 250 mW или 400 mW - Очень высокая изоляция контактов 10 мм, 6kV - Влагозащита: RT II стандарт, (RT III опционально) - Выводы с шагом 3.2 или 5 мм	13 95 Серия
		$\begin{array}{r} 6 \mathrm{~A} \\ 10 \mathrm{~A} \end{array}$	2 CO	Миниатюрные реле для печатного монтажа - Высокая физическая изолғция между соседними контактами - Катушки DC - 8 мм, Изоляция катушка-контакты 6kV (1.2/50 мкс) - Влагозащита: RT II - Выводы с шагом 5 мм	95 Серия
	45 Серия	16 A	$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	Миниатюрные реле для печатного монтажа - Реле для температур до $+125^{\circ} \mathrm{C}$ - Зазор ≥ 3 мм согласно EN 60730-1 - 8 мм, Изоляция катушка-контакты 6kV (1.2/50 мкс) - Чувствительная катушка DC: 360 mW - Печатный монтаж + наконечник Faston 250	

Реле для печатного монтажа - Краткий обзор

	Номинальный ток	Кол-во Контактов	Возможности	Розетки
46 Серия		2 CO	Миниатюрные промышленные реле - Монтаж в розетку или прямая установка через наконечник Faston - Катушки AC и DC - Версии с кнопкой тест с блокировкой,механическая индикация и светодиод - 8 мм, Изоляция катушка-контакты 6 kV (1.2/50 мкс)	97 Серия
50 Серия	8 A	2 CO	Реле безопасности (EN 50205) - 2 группы перекидных контактов - Реле с принудительным перемещением контактов согласно EN 50205 тип В - Высокая степень изоляции между соседними контактами - 8 мм, Изоляция катушка-контакты 6 kV (1.2/50 мкс) - Влагозащита: RT II	
55 Серия	$\begin{array}{r}10 \mathrm{~A} \\ \hline 7 \mathrm{~A}\end{array}$	$\begin{array}{\|l} 2 \mathrm{CO} \\ 3 \mathrm{CO} \\ \hline \end{array}$	Универсальные реле - Катушки AC и DC - Печатный монтаж или в розетку - Блокируемая кнопка проверки и механический или светодиодный указатель срабатывания	94 Серия
56 Серия	12 A	$\begin{aligned} & 2 \mathrm{CO} \\ & 2 \mathrm{NO} \\ & 4 \mathrm{CO} \\ & 4 \mathrm{NO} \end{aligned}$	Миниатюрные силовые реле - Печатный монтаж или в розетку - Опция с фланцевым разъемом (наконечник Faston 187) - Катушки AC и DC - Варианты с блокируемой кнопкой проверки и механическим или светодиодным указателем срабатывания	96 Серия
60 Серия	10 A	$\begin{aligned} & 2 \mathrm{CO} \\ & 3 \mathrm{CO} \end{aligned}$	Универсальные реле - Разъем 8 или 11 штырьков - Монтажный фланец - Катушки АС и DC, "Реле чувствительные по току" или "Силовые реле" - Варианты с блокируемой кнопкой проверки и механическим или светодиодным указателем срабатывания - Варианты с раздвоенными контактами для коммутации низкоуровневых сигналов	90 Серия
62 Серия	16 A	$\begin{aligned} & 2 \mathrm{CO} \\ & 2 \mathrm{NO} \\ & 3 \mathrm{CO} \\ & 3 \mathrm{NO} \end{aligned}$	Силовые реле - Печатный монтаж или в розетку (Faston 187) или на монтажный фланец (Faston 250) - Катушки AC и DC - Вариант с контактами NO, зазор между контактами > 3 мм - Блокируемая кнопка проверки и механический или светодиодный указатель срабатывания	
65 Серия	20 A 30 A	$\begin{array}{\|l} \hline 1 \mathrm{NO}+ \\ 1 \mathrm{NC} \\ \hline 1 \mathrm{NO} \end{array}$	Силовые реле - Катушки AC и DC - Печатный монтаж или на монтажный фланец (Faston 250) - Вариант с контактами NO, зазор между контактами > 3 мм	
66 Серия	30 A	$\begin{aligned} & 2 \mathrm{CO} \\ & 2 \mathrm{NO} \end{aligned}$	Силовые реле - Печатный монтаж или на монтажный фланец (Faston 250) - Катушки AC и DC - 8 мм, Изоляция катушка-контакты 6 kV (1.2/50 мкс)	

Интерфейсные модули реле - Краткий обзор

\begin{tabular}{|c|c|c|c|}
\hline \& Номинальный TOK \& Кол-во контактов \& Возможности \\
\hline \& \[
\begin{array}{r}
6 \mathrm{~A} \\
16 \mathrm{~A}
\end{array}
\] \& 1 CO \& \multirow{4}{*}{\begin{tabular}{l}
Интерфейсные модули реле \\
- Ширина 6.2 мм или 14 мм \\
- Версии катушек для DC или AC/DC \\
- Специальные типы с подавлением утечки тока \\
- Винтовые и безрезьбовые клеммы \\
(SSR = Твердотельное реле)
\end{tabular}} \\
\hline \& 8 A \& 2 CO \& \\
\hline \& \[
\begin{array}{r}
0,1 \mathrm{~A} \\
2 \mathrm{~A}
\end{array}
\] \& 1 SSR \& \\
\hline \& \[
\begin{aligned}
\& 3 \mathrm{~A} / \\
\& 5 \mathrm{~A}
\end{aligned}
\] \& 1 SSR \& \\
\hline \& 6 A \& 1 CO \& \begin{tabular}{l}
Интерфейсные модули реле \\
- 6.2 мм \\
- Версии катушек для DC или AC/DC \\
- Специальные типы с подавлением утечки тока катушка / входной контур \\
- Дополнительная защита со сменным предохранителем \\
- Версия с таймером (8 функций) \\
- Винтовые клеммы \\
(SSR = Твердотельное реле)
\end{tabular} \\
\hline 48 Серия \& \begin{tabular}{l}
10 A \\
16 A \\
10 A \\
8 A
\end{tabular} \& \begin{tabular}{|c}
1 CO \\
2 CO
\end{tabular} \& \begin{tabular}{l}
Интерфейсные модули реле \\
- Ширина 15.8 мм \\
- Катушки AC или DC \\
- Быстрое извлечение реле с помощью пластикового зажима \\
- Индикация электропитания и модуль подавления EMC помех катушки в стандартной версии \\
- Винтовые и безрезьбовые клеммы
\end{tabular} \\
\hline 49 Серия \& \[
\begin{array}{r}
10 \mathrm{~A} \\
16 \mathrm{~A} \\
\hline \\
\hline 8 \mathrm{~A}
\end{array}
\] \& \begin{tabular}{|c}
1 CO \\
2 CO
\end{tabular} \& \begin{tabular}{l}
Интерфейсные модули реле \\
- Ширина 15.8 мм \\
- Катушки AC или DC \\
- Быстрое извлечение реле с помощью пластикового зажима \\
- Индикация электропитания и модуль подавления EMC помех катушки в стандартной версии \\
- Винтовые и безрезьбовые клеммы
\end{tabular} \\
\hline 4С Серия \& 16 A
8
8 A \& \begin{tabular}{|c}
1 CO \\
2 CO
\end{tabular} \& \begin{tabular}{l}
Интерфейсные модули реле \\
- Ширина 15.8 мм \\
- Катушки AC или DC \\
- Быстрое извлечение реле с помощью пластикового зажима \\
- Индикация электропитания и модуль подавления EMC помех катушки в стандартной версии \\
- Винтовые и безрезьбовые клеммы \\
- Механическая индикация и кнопка проверки
\end{tabular} \\
\hline 58 Серия \& \(\begin{array}{r}10 \mathrm{~A} \\ \hline 7 \mathrm{~A}\end{array}\) \& \[
\begin{array}{|l}
\hline 2 \mathrm{CO} \\
3 \mathrm{CO} \\
\hline \\
\hline
\end{array}
\] \& \begin{tabular}{l}
Интерфейсные модули реле \\
- Ширина 27 мм \\
- Катушки AC или DC \\
- Быстрое извлечение реле с помощью пластикового зажима \\
- Индикация электропитания и модуль подавления EMC помех катушки в стандартной версии \\
- Механическая индикация и кнопка проверки
\end{tabular} \\
\hline 59 Серия \& 10 A

7 A \& 2 CO \& | Интерфейсные модули реле |
| :--- |
| - Ширина 27 мм |
| - Катушки AC или DC |
| - Быстрое извлечение реле с помощью пластикового зажима |
| - Индикация электропитания и модуль подавления EMC помех катушки в стандартной версии |
| - Винтовые и безрезьбовые клеммы |
| - Механическая индикация и кнопка проверки |

\hline
\end{tabular}

[^0]Таймеры и реле контроля - Краткий обзор

		Номинальный TOK	Функции и возможности	
	19 Серия	$\begin{array}{r} 1 \mathrm{~A} \\ 5 \mathrm{~A} \\ 16 \mathrm{~A} \end{array}$	Модули индикации состояния Модули защиты от перегрузки Аналоговые модули защиты от перегрузки Силовые модульные реле	Модули управления и индикации состояния - Нагляднан индикация состояния сигналов или оборудования - Простые для наладки переключатели и потенциометры - Контакт обратной свғзи; сигнализация ручного режима работы - Компактный корпус, ширина:17.5 или 35 мм
	71 Серия	10 A	Контроль перенапряжения и пониженного напряжения Контроль наличия напрнжения или тока Асимметрия фазы Чередование фаз Обрыв фазы Термисторный датчик	Контрольные реле - Ширина 35 мм - 1- или 3-х фазные системы - Настраиваемые или фиксированные параметры - Позитивные предохранительные логические схемы - Монтаж на DIN-рейку 35 мм (EN 60715)
		16 A	Реле контроля уровня (заполнение или опорожнение)	Контрольное реле Для токопроводящих жидкостей Настраиваемая или фиксированная чувствительность (5... 150k Ω)
	72 Серия	6 A	Чередование фаз Обрыв фазы	Контрольное реле - Ширина 17.5 мм - Универсальные реле контроля напряжения (208...480V AC)
	77 Серия	5 A	Включение при переходе синусоиды через ноль; Произвольное включение	Модульное твердотельное реле (SSR) - Корпус 17.5 мм - Рекомендуетсн для ламповых нагрузок - Монтаж на DIN-рейку 35 мм (EN 60715)
	7Е Серия	$\begin{aligned} & 25 \mathrm{~A} \\ & 32 \mathrm{~A} \\ & 65 \mathrm{~A} \end{aligned}$	Электросчетчик	Электросчетчик kWh - 1- или 3-х фазный - Одно- или двух-тарифный - Импульсный выход для дистанционного считывания показаний расхода энергии; SO-интерфейс (открытый коллектор) согл. DIN 43864 - ЖK-дисплей и механическан индикация - Монтаж на DIN-рейку 35 мм (EN 60715)
	7P Серия	-	SPD тип 1, 2, 3	Устройства защиты от импульсных перенапряжений (SPD) - Ограничитель перенапряжений для систем / приложений с напрнжением 230 V или 400 V - 1- или 3-х фазные системы - Заменнемый модуль регулируемого сопротивления (варистор) и встроенный модуль искрового барьера - Визуализация и дистанционная сигнализация статуса варистора - Монтаж на DIN-рейку 35 мм (EN 60715)
	7 C Серия	5 A	Щитовой термостат Управление отоплением Управление вентиляцией	Щитовой термостат - Компактный размер - Быстрое срабатывание, биметаллический датчик - Широкий диапазон температурных уставок - Продолжительный срок службы - Монтаж на DIN-рейку 35 мм (EN 60715)
	80 Серия	$\begin{array}{r} 1 \mathrm{~A} \\ 16 \mathrm{~A} \end{array}$	Мульти- и монофункциональные таймеры	Модульные таймеры - Ширина 17.5 мм - 6 временных шкал от 0.1с до 24ч - Широкий диапазон напрнжений - Мощная изоляция входа/выход - 1 группа контактов - Релейный выход 16А - Выход для твердотельного реле 1А
	81 Серия	16 A	Мультифункциональные таймеры для различного напрнжения	Модульные таймеры - Ширина 17.5 мм - 7 функций (4 с пуском от питающего напряжения и 3 с пуском от контрольного напряжения, с кнопкой Сброс) - 6 временных шкал от 0.1с до $1 ч$ - 1 группа контактов - Монтаж на DIN-рейку 35 мм (EN 60715)
	83 Серия	16 A	Мульти- и монофункциональные таймеры	Модульные таймеры - Ширина 22.5 мм - 6 временных шкал от 0.1с до 10 дней - Широкий диапазон напряжений - 1 pole - Специальные версии: 2 контакта с таймером или 1 мгновенного действия +1 с таймером

Таймеры и реле контроля - Краткий обзор

	Номи- нальный ток	Функции и возможности		Розетки
85 Серия	$\begin{array}{r} 7 \mathrm{~A} \\ 10 \mathrm{~A} \end{array}$	Мультифункциональные таймеры	Миниатюрные таймеры - Электропитание $\mathrm{AC/DC}$, неполяризованное - 7 временных шкал от 0.05 с до $100 ч$ $-2,3$ или 4 группы контактов	94 Серия
86 Серия	-	Мульти- функциональные и бифункциональные таймеры	Модульные таймеры - Широкий диапазон напражений - Шкала времени от 0.05 с до 1004 - Типы катушек для широкого диапазона напряжений $A C$ или $D C$	
87 Серия	$\begin{aligned} & 5 \mathrm{~A} \\ & 8 \mathrm{~A} \end{aligned}$	Мульти- и монофункциональные таймеры	Модульные таймеры - Ширина 22.5 мм - Электропитание AC/DC, неполғризованное - Специальные версии: 2 контакта с таймером или 1 мгновенного действин + 1 с таймером - Шкала времени от 0.5 с до 604 - Широкий диапазон напряжений	
88 Серия	$\begin{aligned} & 5 \mathrm{~A} \\ & 8 \mathrm{~A} \end{aligned}$	Мультифункциональные таймеры	Таймеры для установки в розетку или на переднюю панель - Контакты 8 или 11 штырьков - Шкала времени от 0.05 с до 1004 - Электропитание ACIDC - Версии: 2 контакта с таймером или - 1 мгновенного действия +1 с таймером	90 Серия
	-	Многофункциональные	Розетки со встроенным многоФункц. таймером - Ширина 6.2 мм - 4 шкалы времени от 0.1 с до 64 - Питание пер./пост. тока - Для использования с реле 34.51 и 34.81 , для 34 и 38 серий	

Оборудование для жилых и офисных зданий - Краткий обзор

- Ширина 17.5 и 35 мм
- Катушки AC/DC, тихая работа
- 2 или 4 контакта
- Установка на DIN-рейку 35 мм (EN 60715)

Шаговые реле с электрическим разделением катушки и
управляющих контактов

- Катушка AC
- 1 или 2 контакта

Шаговые реле с объединенной электрической схемой ка-
тушки и управляющих контактов

- Катушка AC
- 1 или 2 контакта
- Выбор 3 последовательностей переключений

30 Серия - Субминиатюрные двухрядные реле 2 A

Характеристики

Сигнальные реле 2 А для печатного монтажа

- 2 перекидных контакта
- Возможность коммутации низкоуровневых сигналов
- Субминиатюрные, промышленный стандарт, корпус с двухрядным расположением выводов
. Катушка постоянного тока высокой чувствительности, 200 мВт
- Влагонепроницаемые: RT III

Информация по заказам

Пример: 30-я серия реле для печатного монтажа с 2 перекидными контактами (DPDT) 2A, чувст. обмотка DC 12V.

Технические параметры

Изоляция в соответствии с EN 61 810-1 ed

Номинальное напряжение питания VAC	230/400	120...240 однофазный
Расчетное напряжение изоляции VAC	250	125
Уровень загрязнения	1	2
Изоляция между обмоткой и контактами		
Тип изоляции	Базовый	Базовый
Категория перегрузки	I	II
Расчетное импульсное напряжение kV (1.2/50 мкс)	1.5	1.5
Электрическая прочность V AC	1,000	1,000
Изоляция между соседними контактами		
Тип изоляции	Базовый	Базовый
Категория перегрузки	I	II
Расчетное импульсное напрнжение kV (1.2/50 мкс)	1.5	1.5
Электрическая прочность V AC	1,500	1,500
Изоляция между разомкнутыми контактами		
Тип расцепления	Микро-расцепление	Микро-расцепление
Электрическая прочность B~/kV (1.2/50 мкс)	750/1	750/1
Прочее		
Время дребезга: НО/НЗ мс	1/3	
Виброустойчивость (5..55 Гц,): НО/НЗ g	15/15	
Ударопрачность g	16	
Потери мощности Вез нагрузки	0.2	
при номинальном токе Вт	0.4	
Рекомендуемое расстояние между реле но плате мм	≥ 5	

Характеристика контактов

F 30 - Электрическая долговечность (AC1) при ном. нагрузке (125 B)

Примечание:
Номинальный ток 2 А соответствует предельному длительному току.

Характеристики катушки

Версия для DC (чувствительная 0.2 Вт)

Номин. напряж. U_{N}	Код катушки	Рабоч $\mathrm{U}_{\min }$	апазон $\mathrm{U}_{\text {max }}$	Сопротивл. R	Потребл. I при U_{N}
B		B	B	Ω	MA
5	7.005	3.7	7.5	125	40
6	7.006	4.5	9	180	33
9	7.009	6.7	13.5	405	22
12	7.012	8.4	18	720	16
24	7.024	16.8	36	2,880	8.3
48	7.048	36	72	11,520	4.1

R 30 - Отношение рабочего диапазона для пост. тока к температуре окр. среды

1 - Макс. Допустимое напряжение на обмотке.
2 - Мин. Напряжение удержанин обмотки при температуре окружающей среды.

32 Серия - Субминиатюрные РСВ реле 6 А

Характеристики

Реле 6 А для печатного монтажа

- 1 перекидной контакт или нормально открытый контакт
- Субминиатюрная, низкопроффильная плата
- Катушка постоянного тока высокой чувствительности, 200 мВт - Влагонепроницаемые: RT III

Информация по заказам

Пример: 32-я серия реле для печатного монтажа с 1 NO контактом (SPDT-NO), чувст. обмотка на номинальное напряжение 24 B DC.

Выбор характеристик и опций: возможны комбинации только в однzom ряду.
Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	A	B	C	D
32.21	чувств. DC	$\mathbf{2 - 4}$	$0-3$	0	0

Технические параметры

Изоляция в соответствии с EN 61 810-1 ed		
Номинальное напряжение питания VAC	230/400	
Расчетное напряжение изоляции VAC	250	
Уровень загрязнения	2	
Изоляция между обмоткой и контактами		
Тип изоляции	Базовый	
Категория перегрузки	III	
Расчетное импульсное напряжение kV (1.2/50 мкс)	5	
Электрическая прочность V AC	4,000	
Изоляция между разомкнутыми контактами		
Тип расцепления	Микро-расцепление	
Электрическая прочность $\quad \mathrm{B} / \mathrm{kV}$ (1.2/50 мкс)	1,000/1.5	
Устойчивость к перепадам		
Разрыв (5...50)нс, 5 кГц, на А1- А2	EN 61000-4-4	уровень 4 (4 kV)
Импульс (1.2/50 мкс) на А1-A2 (при дифференциальном включении)	EN 61000-4-5	уровень 3 (2 kV)
Прочее		
Время дребезга: $\mathrm{HO} / \mathrm{H} 3$ (мс	$2 / 10$ (перекидной)	2/- (нормально открытый)
Виброустойчивость (5..55 Гц,): НО/НЗ g	10/10 (перекидной)	10/- (нормально открытый)
Ударопрачность 9	20	
Потери мощности без нагрузки Вт	0.2	
при номинальном токе Вт	0.5	
Рекомендуемое расстояние между реле но плате мм	≥ 5	

32 Серия - Субминиатюрные РСВ реле 6 A

Характеристика контактов

F 32 - Электрическая долговечность (АС) при ном. нагрузке

Н 32 - Макс. отключающая способность DC1

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1.
Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики катушки

Версия для DC (чувствительная 0.2 вт)

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Сопротивл. R	Потребл. I при U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
B		B	B	Ω	MA
5	7.005	3.9	7.5	125	40
12	7.012	9.4	18	720	16
24	7.024	18.7	36	2,880	8.3
48	7.048	37.4	72	11,520	4

R 32 - Отношение рабочего диапазона для пост. тока к температуре окр. среды

1 - Макс. Допустимое напряжение на обмотке.
2 - Мин. Напряжение удержания обмотки при температуре окружающей среды.

Характеристики

ПО КЛАССИФИКацИИ UL, МоШНОСТь в л.с.и НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ.
"ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики	
Контактная группа (конфигурация)	1 перекидной контакт (SPDT)
Номинальный ток/Макс. пиковый ток А	6/10
Ном. напряжение/Макс. напряжение B~	250/400
Номинальная нагрузка AC1 BA	1,500
Номинальная нагрузка (230 B~) AC15 BA	300
Догустимая мощностьодноразнюго двигателя (230 В - кВт	0.185
Отключающая способность DC1: 30/110/220 BA	6/0.2/0.12
Минимальный ток переключения мВт(B/мA)	500 (12/10)
Стандартный материал контакта	AgNi
Характеристики катушки	
Номин. напряж. (U_{N}) V AG (50/60 Гц)	-
V DC	5-12-24-48-60
Ном. мощн. AC/DC $\quad \mathrm{BA}(50$ Гц)/Вт	-/0.17
Рабочий диапазон AC	-
DC	(0.7...1.5) U_{N}
Напряжение удержания AC/DC	-/0.4 U ${ }_{\mathrm{N}}$
Напряжение отключения AC/DC	-/0.05 U_{N}
Технические параметры	
Механическая долговечность AC/DC циклов	$-/ 10 \cdot 10^{6}$
Электр. договечность при ном. нагрузке АС1 циклов	$60 \cdot 10^{3}$
Время вкл/выкл мс	5/3
Изоляция между катушкой и контактами (1.2/50 $\mu \mathrm{s}$) kB	6 (8 mm)
Электриескадпрочнстъмеждуоткрыпыммконактам VAC	1,000
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-40...+85
Категория защиты	RT II
Сертификация (в соответствии с типом)	(1/ PG RINA c ${ }^{\text {ciol }}$

34 Серия - Ультратонкие твердотельные РСВ реле (SSR) 0.1-2 A

Характеристики

ультратонкие твердотельные реле для монтажа напрямую на печатную плату или через рев розетку
Возможность переключения выхода одной цепи:
-2 A 24 V DC

- 0.1 A 48 V DC
- 2 A 240 V AC

Бесшумное скоростное переключение, большая долговечность
Ультратонкие, ширина 5 мм
Чувствительность входной цепи к пост. току (двойная обмотка для AC/DC допус кает использование розеток 93 серии) По классификации UL (определенные комбинации реле/розеток)
Влагонепроницаемые: RT III
Изоляция на 2500 В, ввод-вывод

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток (10 мс) А
Нам. напряжениеМакс. блокирующее напряжение B
Диапазон напряжений но переключение В

Минимальный ток переключения	мА
Макс. ток утечки в состоннии ВЫКЛ . мА	

Макс. падение напряжения в состоянии ВКЛ. В
Входная цепь

* Примечание: Все технические параметры действительны при монтаже реле на печатной плате или в розетке РСВ, тип 93.11. Если реле используется с розетками для DIN-рейки (35 мм), типа 93.51, см. технические параметры для 38 Серии; если они используются с розетками 93.61, $93.62,93.63,93.64$ или 93.68 , см. технические параметры 39 Серии MasterINTERFACE.

Информация по заказам

Электромеханическое реле (EMR)

Пример: 34-я серия тонких электромеханических реле с 1 перекидным контактом (SPDT), 6 A, чувст. катушка на номинальное напряжение 24 V DC.

Выбор характеристик и опций: возможны комбинации только в одном ряду.
Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
34.51	чувств. DC	$\mathbf{0 - 4 - 5}$	$\mathbf{0 - 3}$	$\mathbf{1}$	$\mathbf{0}$
34.51	чувств. DC	$0-4-5$	0	1	9

Твердотельное реле (SSR)

Пример: 34 серия, твердотельное реле SSR, 2 А на выходе, 24 V DC.

Версия с плоским корпусом

Электромеханическое реле

Технические параметры

Изоляция в соответствии с EN 61810-1 ed

Характеристика контактов

F 34 - Электрическая долговечность (АС) при ном. нагрузке

Характеристики катушки

Параметры катушки DC

Номин. напряж. U_{N}	Код катушки	Рабочи $U_{\text {min }}$	$\begin{aligned} & \text { апазон } \\ & U_{\max } \end{aligned}$	Сопротивл. R	Потребл. I при U_{N}
B		B	B	Ω	MA
5	7.005	3.5	7.5	130	38.4
12	7.012	8.4	18	840	14.2
24	7.024	16.8	36	3,350	7.1
48	7.048	33.6	72	12,300	3.9
60	7.060	42	90	19,700	3

Н 34 - Макс. отключающая способность DC1

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $60 \cdot 10^{3}$ циклов
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1.
Примечание: Время срабатывания под нагрузкой можно будет увеличить.

R 34 - Отношение рабочего диапазона для пост. тока к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания обмотки при температуре окружающей среды.

Твердотельное реле

Технические параметры

Прочее
Потери мощности

без выходного тока	Вт	0.17
при номинальном токе	Вт	0.4

Входные параметры

Входные данные - версии для DC

Номин. напряж. U_{N}	Код входной цепи	Рабочий диапазон B		Напряжения отключения	Полное сопротив- ление	Ток управления I при U_{N}
5	7.005	3.5	$12\left(10^{*}\right)$	1	$715\left(416^{*}\right)$	$7\left(12^{*}\right)$
12	7.012	8	17	4	1,940	7.2
24	7.024	16	30	10	3,200	7
60	7.060	35	72	20	21,300	3

* Выходные данные для AC.

Выходные параметры

L 34 - Выходной ток при темп. окружающей среды SSR - для DC/AC 2 А на выходе

L 34 - Выходной ток при темп. окружающей среды
SSR - для DC 0.1 А на выходе

Розетка на DIN-рейку с винтовым зажимом: 35 мм (EN 60715)
Общие данные

- Экономия места в щите, ширина 6.2 мм
- Подключение 16-полюсной перемычкой
- Встроенная индикация катушки и контур защиты
- Надежная фиксация и быстрое извлечение с помощью пластикового держателя
- Комбинированная головка винтов клемм (шлиц+крест)

Технические характеристики и комплекты поставки см. MasterINTERFACE 39 Cepия -
"Интерфейсные модули реле"

Электромеханические реле - EMR

Напряжение питания	Тип реле	Тип розетки (см. Реле 39 Серии)				
		$\begin{gathered} \text { MasterBASIC } \\ (39.11 \ldots . .) \end{gathered}$	$\begin{gathered} \text { MasterPLUS } \\ (39.31 \ldots . .) \end{gathered}$	$\begin{gathered} \text { MasterINPUT } \\ (39.41 \ldots . .) \end{gathered}$	$\begin{gathered} \text { MasterOUTPUT } \\ (39.21 \ldots . .) \end{gathered}$	MasterTIMER (39.81.....)
6 V AC/DC	34.51.7.005.xx10	93.61.7.024	93.63.7.024	93.64.0.024	93.62.7.024	-
12 V AC/DC	34.51.7.012.xx10	93.61.7.024	93.63.7.024	93.64.0.024	93.62.7.024	93.68.0.024
24 V AC/DC	34.51.7.024.xx10	93.61.7.024	93.63.7.024	93.64.0.024	93.62.7.024	93.68.0.024
60 V AC/DC	34.51.7.060.xx10	-	93.63.7.060	-	-	-
(110...125)V AC *	34.51.7.060.xx10	-	93.63.3.125	-	-	-
(220...240)V AC *	34.51.7.060.xx10	-	93.63.3.230	-	-	-
(110...125)V AC/DC	34.51.7.060.xx10	-	93.63.0.125	93.64.0.125	93.62.0.125	-
(220...240)V AC	34.51.7.060.xx10	93.61.8.230	93.63.8.230	93.64.8.230	93.62.8.230	-
(110...125) V DC	34.51.7.060.xx10	-	93.63.7.125	-	-	-
220 V DC	34.51.7.060.xx10	-	93.63.7.220	-	-	-

* Подавление тока утечки
93.64

Твердотельные реле - SSR

Напряжение питания	Тип реле	Тип розетки (см. Реле 39 Серии)				
		$\begin{gathered} \text { MasterBASIC } \\ (39.10 \ldots . .) \end{gathered}$	$\begin{gathered} \text { MasterPLUS } \\ (39.30 \ldots . .) \end{gathered}$	$\begin{gathered} \text { MasterINPUT } \\ (39.40 \ldots . .) \end{gathered}$	$\begin{gathered} \text { MasterOUTPUT } \\ (39.20 \ldots . .) \end{gathered}$	$\begin{gathered} \text { MasterTIMER } \\ (39.80 \ldots . .) \end{gathered}$
12 V AC/DC	34.81.7.012.xxxx	-	-	-	-	93.68.0.024
24 V AC/DC	34.81.7.024.xxxx	-	93.63.0.024	93.64.0.024	-	93.68.0.024
(110...125)V AC *	34.81.7.060.xxxx	-	93.63.3.125	-	-	-
(220...240)V AC *	34.81.7.060.xxxx	-	93.63.3.230	-	-	-
(110...125)V AC/DC	34.81.7.060.xxxx	-	93.63.0.125	93.64.0.125	93.62.0.125	-
(220...240)V AC	34.81.7.060.xxxx	93.61.8.230	93.63.8.230	93.64.8.230	93.62.8.230	-
6 V DC	34.81.7.005.xxxx	93.61.7.024	93.63.7.024	93.64.0.024	93.62.7.024	-
12 V DC	34.81.7.012.xxxx	93.61.7.024	93.63.7.024	93.64.0.024	93.62.7.024	-
24 V DC	34.81.7.024.xxxx	93.61.7.024	93.63.7.024	93.64.0.024	93.62.7.024	-
60 V DC	34.81.7.060.xxxx	-	93.63.7.060	-	-	-
(110...125) V DC	34.81.7.060.xxxx	-	93.63.7.125	-	-	-
220 V DC	34.81.7.060.xxxx	-	93.63.7.220	-	-	-

* Подавление тока утечки

Аксессуары

16-канальная перемычка	093.16 (синий), 093.16.0 (черный), 093.16.1 (красный)
Пластиковый разделитель двойного назначения	093.60
Список маркеров	093.64
Технические параметры	
Номинальные параметры	$6 \mathrm{~A}-250 \mathrm{~V}$
Изоляция	6 kV (1.2/50 мкс) между катушкой и контактами
Категория защиты	IP20
Температура окружающей среды ${ }^{\circ} \mathrm{C}$	-40...+70
Момент затяжки винта Нм	0.5
Длина зачистки провода мм	10
Макс. размер провода	одножильный и многожильный провод
MM ${ }^{2}$	$1 \times 2.5 / 2 \times 1.5$
AWG	$1 \times 14 / 2 \times 16$

93 Серия - Розетки и аксессуары для реле 34 Серии

Розетка на DIN-рейку с пружинным Зажимом: 35 мм (EN 60715)

Общие данные

- Экономия места в щите, ширина 6.2 мм
- Подключение 20-полюсной перемычкой
- Встроенная индикация катушки и контур защиты
- Надежная фиксация и быстрое извлечение с помощью пластикового держателя

Сертификация
В соответствии с типом)
C \mathbb{C} © (© (1
RINA ${ }^{-15}{ }^{*}$
(Yi) us Согласно
спецификации Определенные комбинации реле/розеток

Технические характеристики и комплекты поставки см. 38 Серия - "Интерфейсные модули реле"

Электромеханические реле - EMR и Твердотельные реле - SSR

Напряжение питания	Тип реле (см. реле 38 Серии)		Тип розетки
	Электромеханические реле - EMR (38.61.....)	Твердотельные реле - SSR (38.81.....)	
12 V AC/DC	34.51.7.012.xx10	-	93.51.0.024
24 V AC/DC	34.51.7.024.xx10	-	93.51.0.024
(110...125)V AC/DC	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.0.125
(220...240)V AC/DC	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.0.240
(110...125)V AC/DC *	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.3.125
(220...240)V AC *	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.3.240
(220...240)V AC	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.8.240
12 V DC	34.51.7.012.xx10	34.81.7.012.xxxx	93.51.7.024
24 V DC	34.51.7.024.xx10	34.81.7.024.xxxx	93.51.7.024
60 V DC	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.7.060

* Подавление тока утечки

Аксессуары

20-канальная перемычка	093.20
Пластмассовый разделитель 093.01	
Список маркеров	093.64
Технические параметры	
Номинальные параметры	$6 \mathrm{~A}-250 \mathrm{~V}$
Изоляция	6 kV (1.2/50 мкс) между катушкой и контактами
Категория защиты	IP20
Температура окружающей среды ($\mathrm{U}_{\mathrm{N}} \leq 60 \mathrm{~V} />60 \mathrm{~V}$) ${ }^{\circ} \mathrm{C}$	-40...+70/-40...+55
Длина зачистки провода mm	10
Макс. размер провода	одножильный и многожильный провод
mm^{2}	$1 \times 2.5 / 2 \times 1.5$
AWG	$1 \times 14 / 2 \times 16$

(18) PG ${ }_{c} \mathbf{H I}_{\text {us }}^{\circ}$

Использование удерживающего зажима:

Вид сбоку

Характеристики

Реле 10 А для печатного монтажа

- Новый уменьшенный размер
- 1 перекидной контакт или нормально открытый контакт
- Миниатюрное исполнение - "Кубик сахара"

Катушка постоянного тока - 360 мВт
Влагонепроницаемые : RT III
Материал контактов - бескадмиевый
Соответствие директиве RoHS

	Вид сбоку	Вид сбоку
Контактные характеристики		
Контактная группа (конфигурация)	1 перекидной контакт (SPDT)	1 NO (SPST-NO)
Номинальный ток/Макс. пиковый ток A	10/15	10/15
Ном. напряжение/Макс. напряжение $\mathrm{B} \sim$	250/250	250/250
Номинальная нагрузка AC 1 BA	2,500	2,500
Номинальная нагрузка(230 B~) AC15 BA	500	500
Догустихая мощнотьоднореазнюго двигателя (230В-) кВТ	0.37	0.37
Отключающая способность DC1: 30/110/220 BA	10/0.3/0.12	10/0.3/0.12
Минимальный ток переключения мВт(B/мA)	500 (5/100)	500 (5/100)
Стандартный материал контакта	AgSnO_{2}	AgSnO_{2}
Характеристики обмотки		
Номин. напряж. ($\left.\mathrm{U}_{\mathrm{N}}\right) \quad \mathrm{V}$ AC (50/60 Гц)	-	-
V DC	3-5-6-9-12-24-48	3-5-6-9-12-24-48
Ном. мощн. AC/DC $\quad \mathrm{BA}(50$ Гц)/Вт	-/0.36	-/0.36
Рабочий диапазон AC	-	-
DC	(0.75 ..1.5) U_{N}	(0.75...1.5) U_{N}
Напряжение удержания AC/DC	$-10.4 \mathrm{U}_{\mathrm{N}}$	$-10.4 \mathrm{U}_{\mathrm{N}}$
Напряжение отключения AC/DC	$-/ 0.1 \mathrm{U}_{\mathrm{N}}$	$-10.1 U_{\mathrm{N}}$
Технические параметры		
Механическая долговечность AC/DC циклов	$-/ 10 \cdot 10^{6}$	$-/ 10 \cdot 10^{6}$
Электр. договечность при ном. нагрузке АС1 циклов	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Время вкл/выкл мс	9/3	9/2
Изопдция между обмоткой и контактами (1.250 $\mu \mathrm{s}$) kB	4	4
Эгеккрнесхадпрочостымеждуоқрыпымиконактам VAC	1,000	1,000
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-40...+85	-40...+85
Категория защиты	RT III	RT III
Сертификация (в соответствии с типом)		

Информация по заказам

Пример: 36-я серия миниатюрных реле для печатного монтажа с 1 перекидным контакт (SPDT), 10 A, обмотка на номинальное напряжение 12 B DC.

Выбор характеристик и опций: возможны комбинации только в одном ряду.
Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание обмотки	A	B	C	D
36.11	DC	$\mathbf{4}$	$\mathbf{0 - 3}$	$\mathbf{0}$	$\mathbf{1}$

Технические параметры

36 Серия - Миниатюрные РСВ реле 10 A

Характеристика контакта

F 36 - Электрическая долговечность (AC) при ном. нагрузке

Н 36 - Макс. отключающая способность DC1

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1.
Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики обмотки

Версия для DC

Номин. напряж. U_{N}	Код обмотки	Рабочй $U_{\text {min }}$	апазон	Сопротивл. R	Потребл. I при U_{N}
B		B	B	Ω	MA
3	9.003	2.2	4.5	25	120
5	9.005	3.7	7.5	70	72
6	9.006	4.5	9	100	60
9	9.009	6.7	13.5	225	40
12	9.012	9	18	400	30
24	9.024	18	36	1,600	15
48	9.048	36	72	6,400	7.5

R 36 - Отношение рабочего диапазона для пост. тока к температуре окр. среды

1 - Макс. Допустимое напряжение на обмотке.
2 - Мин. Напряжение удержания обмотки при температуре окружающей среды.

40 Серия - Миниатюрные РСВ реле 12-16 А

Характеристики

Серия реле с 1 группа контактов 40.31-1 группа контактов 12 A (выводы с шагом 3.5 мм)
40.61-1 группа контактов 16 A (выводы с шагом 5 мм)
Монтаж на печатную плату

- Чувствительная катушка DC в стандартном варианте
- Материал контактов - бескадмиевый
- Изоляция катушка-контакты $6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ 8 мм зазор между катушкой и контактами Соответствует нормам EN 60335-1 (glow wire)
- Уровень защиты: стандарт RT II Номинальная индуктивная нагрузка AC (соответствует категории использования AC15) 4 A 250 V в соответствии EN 61810-1:2008

Контактные характеристики
Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение
Номинальная нагрузка AC1
Номинальная нагрузка(230 B~) AC15
Допустимая мощностьоднофазного двигателя (230 B~) kB
Отключающая способность DC1: 30/110/220 BA
Минимальный ток переключения мВт $(\mathrm{B} / \mathrm{MA})$
Стандартный материал контакта
Характеристики катушки

Информация по заказам

Пример: 40-я серия реле для печатных плат, 1 перекидной контакт (SPDT) 12 A, катушка 24 V DC.

Тип катушки

7 = чувствительнан DC
Напряжение обмотки
$012=12$ B DC
$024=24 B D C$
Выбор характеристик и опций: возможны комбинации только в одном ряду. Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание обмотки	A	B	C	D
40.31	DC	$\mathbf{1}$	$\mathbf{0 - 3}$	$\mathbf{2}$	$\mathbf{0}$
40.61	DC	$\mathbf{1 - 2}$	$\mathbf{0 - 3}$	$\mathbf{2}$	$\mathbf{0}$

Технические параметры

Изоляция в соответствии с EN 61810-1 еd		
Номинальное напряжение питания VAC	230/400	
Расчетное напряжение изоляции VAC	250	400
Уровень загрязнения	3	2
Изоляция между катушкой и контактами		
Тип изоляции	Усиленный (8 mm)	
Категория перегрузки	III	
Расчетное импульсное напряжение kV (1.2/50 мкс)	6	
Электрическая прочность VAC	4,000	
Изоляция между разомкнутыми контактами		
Тип расцепления	Микро-расцепление	
Электрическая прочность $\quad \mathrm{B} \sim / \mathrm{kV}(1.2 / 50$ мкс $)$	1,000/1.5	
Устойчивость к перепадам		
Разрыв (5...50) нс, 5 кГц, на А1-А2	EN 61000-4-4	уровень 4 (4 kV)
Импульс (1.2/50 мкс) на А1-A2 (при дифференциальном включении)	EN 61000-4-5	уровень 3 (2 kV)
Прочее		
Время дребезга: НО/Н3 mc	2/5	
Виброустойчивость (10...200Гц,): НО/НЗ g	20/5	
Ударопрачность НО/Н3 g	20/5	
Потери мощности без нагрузки Вт	0.5	
при номинальном токе Вт	1.2 (40.31)	1.8 (40.61)
Рекомендуемое расстояние между реле но плате мм	≥ 5	

Характеристика контактов

F 40 - Электрическая долговечность (АС) при ном. нагрузке Типы 40.31/61

* Индуктивная нагрузка $-\cos \varphi=0.4$: пусковой ток $=$ номинальный ток
** Индуктивная нагрузка - АС15: пусковой ток $=10 \times$ номинальный ток

H 40 - Макс. отключающая способность DC1

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1. Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Номин. напряж. U_{N}	$\begin{gathered} \text { Код } \\ \text { катушки } \end{gathered}$	Рабочий диапазон		Сопротивл. R	Потребл. I при U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
B		B	B	Ω	mA
12	7.012	9.6	18	300	40
24	7.024	19.2	36	1,200	20

Параметры катушки DC - чувствительность 0.5 Вт (типы 40.61)

R 40 - Отношение рабочего диапазона дпя DC к температуре окр. среды

[^1]
Характеристики катушки

Параметры катушки DC - чувствительность 0.5 Вт (типы 40.31)

Номин.	Код	Рабоч	апазон	Сопротивл.	Потребл.
напряж.	катушки				I при U_{N}
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	
B		B	B	Ω	MA
12	7.012	8.8	18	300	40
24	7.024	17.5	36	1,200	20

40 Серия - Миниатюрные РСВ реле 8-10-16 А

Характеристики

Серия реле с 1 и 2 группами контактов 40.31-1 группа контактов 10 A (выводы с шагом 3.5 мм) 40.51-1 группа контактов 10 А (выводы с шагом 5 мм)
40.52-2 группы контактов 8 A
(выводы с шагом 5 мм)
Для монтажа

- напрямую на печатную плату или через РСВ розетку
Установка на 35мм рейку
- через розетки с пружинным и

винтовым зажимами
Катушка DC (стандартная или высокой чувствительности) и катушка AC Материал контактов - бескадмиевый 8 мм, изоляция 6 кВт ($1.2 / 50 \mu \mathrm{~s}$) катушка-контакть По классификации UL (определенные комбинации реле/ розеток)
Уровень защиты: стандарт RT II (возможно RT III) Для использования с розетками 95 серии модулями подавления электромагнитного импульса и таймерами 86 серия

ПО КЛАССИФИКАЦИИ UL, МощНость в л.с.и НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение
Номинальная нагрузка AC1
Дотустимая мощность однофазного двигателя (230 B $) \mathrm{kBT}$
Отключающая способность DC1: 30/110/220 BA
Минимальный ток переключения мВт(B/МА)
Стандартный материал контакта
Характеристики катушки
Номин. напряж. $\left(U_{N}\right) \quad$ VAC $(50 / 60$ Гц)
Ном. мощн. AC/DC/Мувствит. DG BA (50 Гц)/Вт/Вт
Рабочий диапазон \quad AC

Напряжение удержания	AC/DC
Напряжение отключения	AC/DC

Технические параметры
Механическая долговечность AC/DC циклов
Электр. договечность при ном. нагрузке AC1 циклов
Время вкл/выкл
Изоляция между катушкой и контактами $(1.2 / 50 \mu \mathrm{~s}) \mathrm{kB}$
Электринескаяпронностьмеждуоткрьпьмиконтактам VAC
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$
Категория защиты
Сертификация (в соответствии с типом)

A2

Вид сбоку
40.52

выводы с шагом 5 мм 2 группы контоктов 8 A PCB или розетки 95 серии

Вид сбоку

Вид сбоку

1 перекидной контакт (SPDT)

$10 / 20$
$250 / 400$
2,500
500
0.37
$10 / 0.3 / 0.12$
$300(5 / 5)$
AgNi

A	$10 / 20$
$250 / 400$	
	2,500
	500
	0.37
$10 / 0.3 / 0.12$	
$300(5 / 5)$	
	AgNi

$250 / 400$	$10 / 20$	
2,500	$250 / 400$	2,500
500	500	
0.37	0.37	
$10 / 0.3 / 0.12$	$10 / 0.3 / 0.12$	
$300(5 / 5)$	$300(5 / 5)$	
AgNi	AgNi	

T) 2 перекидных контакта (DPDT)

выводы с шагом 5 мм 1 группа контактов 10 A - РСВ или розетки 95 серии

** См. Основные технические характеристики "Руководство по автоматизации процессов пайки" стр II . 40 Серия - Миниатюрные РСВ реле 8-10-16 А

Характеристики

40.61 - 1 группа контактов 16 A (выводы с шагом 5 мм)
$40 . x x .6$ - Бистабильные версии реле типов 40.31, 40.51, 40.52 и 40.61
Для монтажа

- напрямую на печатную плату или через РСВ розетку
Установка на 35мм рейку
- через розетки с пружинным и винтовым зажимами

Катушки DC и AC
Доступна бескадмиевая версия
8 мм, изоляцин 6 кВт (1.2/50 $\mu \mathrm{s})$ катушка-контакты По классификации UL (определенные комбинации реле типа 40.61/ розеток)
Уровень защиты: стандарт RT II (возможно RT III) Для использования с розетками 95 серии модулями подавления электромагнитного импульса и таймерами 86 серия

По КлассИФИКацИИ UL, Мощность в Л.с.и НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)

| Номинальный ток/Макс. пиковый ток | A | 16/30* |
| :--- | ---: | ---: | :---: |
| Ном. напряжение/Макс. напряжение | B~ | $250 / 400$ |
| Номинальная нагрузка АС1 | BA | 4,000 |
| Номинальнан нагрузка(230 B~) AC15 | BA | 750 |
| Допустиман мощностьоднофазного двигателя(230 B~) кBт | 0.55 | |
| Отключающая способность DC1: 30/110/220 BA | $16 / 0.3 / 0.12$ | |
| Минимальный ток переключения мВт(B/мA) | $500(10 / 5)$ | |
| Стандартный материал контакта | | AgCdO |
| Характеристики катушки | | |

Номин. напряж. $\left(U_{N}\right) \quad \operatorname{VAC}(50 / 60$ ГL $)$
Ном. мощн. АС/DC/Чувствит. DC BA (50 Гц)/Вт/В

Рабочий диапазон

	DC/Чувствит. DC
Напряжение удержания	AC/DC
Напряжение отключения	AC/DC
Технические параметры	

Механическая долговечность $\mathrm{AC/DC}$ циклов
Электр. договечность при ном. нагрузке $\mathrm{AC1}$ циклов

Время вкл/выкл
Изоляция между катушкой и контактами $(1.250 \mu \mathrm{~s}) \mathrm{kB}$
Эгектринескаяпронностьмеждуоткрьпыммконтактами VAC
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$
Категория защиты

выводы с шагом 5 мм - 1 группа контактов 16 A - PCB или розетки 95 серии
\qquad
40.61

40.xx. 6

Бистабильные версии
(1 обмотка) типов
40.31/51/52/61 - РСВ или розетки 95 серии

Бистабильная версия (1 обмотка), типы:
40.31.6...
40.51.6...
40.52.6...
40.61.6...

Схемы соединений см. на стр. 8

См. серии
40.31
40.51
40.52
40.61

6-12-24-48-60-110-120-230-240
$6-12-24-48-60-110-120-230-240$
$* * *$ См. таблицу

Bт	$1.2 / 0.65 / 0.5$
$A C$	$(0.8 \ldots 1.1) U_{N}$

BT	$1.2 / 0.65 / 0.5$
$A C$	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
DC	$(0.73 .1 .5) \mathrm{U}^{\prime}(0.8 \ldots .1 .5) \mathrm{U}_{\mathrm{N}}$

5-6-12-24-48-110
5-6-12-24-48-110
1.0/1.0/-
$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
(0.8
-
-

См. серии

40.31
40.51
40.52
40.61

Мин. длительность импульса $\geq 20 \mathrm{~ms}$

[^2]
Характеристики

Репе с 1 группой контактов
 40.11 - 1 группа контактов 10 A (Плоский корпус)
 40.11-2016-1 группа контактов 16 A (Плоский корпус)
 40.41 - 1 группа контактов 10 A (Вертикальный корпус)

Для печатного монтажа - напрямую или для использования с рев розеткой (версия 40.41)

ПО КЛАССИФИКацИИ UL, МощНость в л.с.и НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)

Номинальный ток/Макс. пиковый ток	A
Ном. напряжение/Макс. напряжение	B~

Номинальная нагрузка AC1
Номинальная нагрузка(230 B~) AC15 BA
Догустимая мощностьоднофазнюго двигателя (230 B-) кBт
Отключающая способность DC1: 30/110/220 BA
Минимәльный ток переключения мВт(В/мA)
Стандартный материал контакта
Характеристики катушки

40.11 - 1 группа контактов 10 A - Плоский корпус - Для печатного монтажа	40.11-2016 - 1 группа контактов 16 A - Плоский корпус - Для печатного монтажа	40.41 - 1 группа контактов 10 A - Вертикальный корпус - Для печатного монтажа или для использования с розетками 95 серии
Вид сбоку	Вид сбоку	Вид сбоку
1 перекидной контакт (SPDT)	1 перекидной контакт (SPDT)	1 перекидной контакт (SPDT)
10/20	16/30	10/20
250/400	250/400	250/400
2,500	4,000	2,500
500	750	500
0.37	0.55	0.37
10/0.3/0.12	16/0.3/0.12	10/0.3/0.12
300 (5/5)	500 (10/5)	300 (5/5)
AgCdO	AgCdO	AgCdO
-	-	-
6-12-24-48-60	6-12-24-48	6-12-24-48-60
-/-/0.5	-/-/0.5	-/-/0.5
-	-	-
$-/(0.73 \ldots 1.75) \mathrm{U}_{\mathrm{N}}$	$-/(0.73 \ldots 1.5) \mathrm{U}_{\mathrm{N}}$	$-/(0.73 \ldots 1.75) \mathrm{U}_{\mathrm{N}}$
$-/ 0.4 \mathrm{U}_{\mathrm{N}}$	$-/ 0.4 \mathrm{U}_{\mathrm{N}}$	$-/ 0.4 U_{N}$
$-/ 0.1 U_{N}$	$-/ 0.1 U_{N}$	$-/ 0.1 U_{N}$
$-/ 20 \cdot 10^{6}$	$-/ 20 \cdot 10^{6}$	$-/ 20 \cdot 10^{6}$
$200 \cdot 10^{3}$	$50 \cdot 10^{3}$	$200 \cdot 10^{3}$
12/4	12/4	12/4
6 (8 мм)	6 (8 мм)	6 (8 мм)
1,000	1,000	1,000
$-40 \ldots+70$	$-40 \ldots+70$	$-40 \ldots+70$
RT I	RT I	RT I

Информация по заказам

Пример: 40-я серия PCB реле, 2 перекидных контакта (DPDT), напряжение катушки 230 В AC.

40.31, 10 A
40.41, 10 A
40.51, 10 A

$$
\text { 40.61, } 16 \text { A }
$$

2 = 2 перекидных контакта для: 40.52, 8 А

Тип катушки

$6=$ бистабильная для AC/DC
$7=$ Чувствительного DC
$8=\mathrm{AC}(50 / 60$ Гц)
9 = DC
Напряжение катушки
См. характеристики катушки
Выбор характеристик и опций: возможны комбинации только в одном ряду. Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	A	B	C	D
40.11	Чувств. DC	2-4	0	0	0
40.11	Чувств. DC	2-4	0	16	1
40.41	Чувств. DC	0-2	0-3	0	0
40.31/51	AC - Чувств. DC	0-2-5	0-3	0	0-1
40.31/51	DC	0-2-5	0-3	0	0-1-3
40.52	AC - Чувств. DC	0-2-5	0-3	0	0-1
40.52	DC	0-2-5	0-3	0	0-1-3
40.61	AC - Чувств. DC	0-4	0-3	0	0-1
40.61	DC	0-4	0-3	0	0-1-3
$\begin{aligned} & 40.31 / 51 / \\ & 52 / 61 \end{aligned}$	бистабильная	0	0	0	0

40 Серия - Миниатюрные РСВ реле 8-10-16 А

Технические параметры

40 Серия - Миниатюрные РСВ реле 8-10-16 А

Характеристика контактов

F 40 - Электрическая долговечность (АС) при ном. нагрузке Типы 40.31/51/61

F 40 - Электрическая долговечность (AC) при ном. нагрузке Типы 40.52

F 40 - Электрическая долговечность (АС) при ном. нагрузке Типы 40.11/41

Н 40 - Макс. отключающая способность DC1

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DG1. Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики катушки

Версия для DC (0.65 Вт - стандартная, типы 40.31/51/52/61)

Версия для DC (0.5 Вт - версия с повышенной

чувствительносью, типы 40.11/41)

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Сопротивл.	Потребл. I при U_{N}
B		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max ^{*}}$	R	
6	7.006	4.4	10.5	75	80
12	7.012	8.8	21	300	40
24	7.024	17.5	42	1,200	20
48	7.048	35	84	4,600	10.4
60	7.060	43.8	105	7,200	8.3

${ }^{*} U_{\max }=1.5 U_{N}$ для 40.11-2016

Версия для АС (типы 40.31/51/52/61)

Номин. напрнж. U_{N} B	Код катушки	Рабочий диапазон		Сопротивл. R	$\begin{gathered} \text { Потребл. } \\ \text { I при } \\ \mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz}) \end{gathered}$
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
		B	B	Ω	mA
6	8.006	4.8	6.6	21	168
12	8.012	9.6	13.2	80	90
24	8.024	19.2	26.4	320	45
48	8.048	38.4	52.8	1,350	21
60	8.060	48	66	2,100	16.8
110	8.110	88	121	6,900	9.4
120	8.120	96	132	9,000	8.4
230	8.230	184	253	28,000	5
240	8.240	192	264	31,500	4.1

Версия для DC (0.5 Вт - версия с повышенной
чувствительносью, типы 40.31/51/52/61)

Номин.	Код	Рабочий диапазон		Сопротивл.	Потребл.
U_{N}		$U_{\text {min }}{ }^{*}$	$U_{\text {max }}{ }^{* *}$	R	
B		B	B	Ω	MA
5	7.005	3.7	8.8	50	100
6	7.006	4.4	10.5	75	80
7	7.007	5.1	12.2	100	70
9	7.009	6.6	15.8	160	56
12	7.012	8.8	21	300	40
14	7.014	10.2	24.5	400	35
18	7.018	13.2	31.5	650	27.7
21	7.021	15.4	36.9	900	23.4
24	7.024	17.5	42	1,200	20
28	7.028	20.5	49	1,600	17.5
36	7.036	26.3	63	2,600	13.8
48	7.048	35	84	4,800	10
60	7.060	43.8	105	7,200	8.4
90	7.090	65.7	157	16,200	5.6
110	7.110	80.3	192	23,500	4.7
125	7.125	91.2	219	32,000	3.9

${ }^{*} U_{\text {min }}=0.8 U_{N}$ для 40.61
${ }^{* *} \mathrm{U}_{\max }=1.5 \mathrm{U}_{\mathrm{N}}$ для 40.61

Версия для AC/DC - бистабильная (типы 40.31/51/52/61)

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Сопротивл. R	Потребл. I at U_{N}	Ток катушки* R_{DC}
		$\mathrm{U}_{\min }$	$\mathrm{U}_{\text {max }}$			
V		V	V	Ω	mA	Ω
5	6.005	4	5.5	23	215	37
6	6.006	4.8	6.6	33	165	62
12	6.012	9.6	13.2	130	83	220
24	6.024	19.2	26.4	520	40	910
48	6.048	38.4	52.8	2,100	21	3,600
110	6.110	88	121	11,000	10	16,500

${ }^{* *} R_{D C}=$ Сопротивление при $D C, R_{A C}=1.3 \times R_{D C} 1 W$

Характеристики катушки

R 40 - Отношение рабочего диапазона для DC к температуре окр. среды - Стандартная катушка

R 40 - Отношение рабочего диапазона для DC к температуре окр. среды - Чувствительная катушка , типы 40.11/41

1 - Макс. Допустимое напряжение на катушке
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

R 40 - Отношение рабочего диапазона для DC к температуре окр. среды - Чувствительная катушка, типы 40.31/51/52/61

R 40 - Отношение рабочего диапазона для AC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напрнжение удержания катушки при температуре окружающей среды.

Схема соединения для бистабильной чувствительной катушки реле 40 Серии

Работа при AC

При нажатии на кнопку ПУСК, реле намагничивается через диод и контакты реле переходят в положение пуска и остаются в этом же положении.
При моментальном замыкании переключотеля СБРОС, реле размагничивается через ограничительный резистор по переменному току (R_{AC}) и контакты возвращаются в положение сброса.

Работа при DC

При нажатии на кнопку ПУСК, реле намагничивается и контакты реле переходят в положение пуска и остаются в этом же положении. При моментальном замыкании переключотеля СБРОС, реле размагничивается через ограничительный резистор по переменному току (R_{DC}) и контакты возвращаются в положение сброса.

Примечание: Минимальная длительность импульса на ПУСК или СБРОС составляет 20 мс. Максимальное время неаграниченно. При работе, обязательно убедитесь, что контакты ПУСК и СБРОС не сработали одновременно.

95 Серия - Розетки и аксессуары для реле 40 Серии

Модель	Розетка	Реле	Описание
99.02	95.03	40.31	Розетка с винтовым зажимом
	95.05	40.51	-Верхние клеммы - Контакты
		40.52	-Нижние клеммы - катушка
		40.61	

Установка	Аксессуары
Панель или 35-мм	- Маркировка катушки и
монтажное гнездо	модули подавления
(EN 60715)	электромагнитного импульса
	- Перемычка
	- Модульные таймеры
	- Пластмассовый
	удерживаюший зажим

Описание	У
Розетка с винтовым зажимом	П
Схема соединения для 95.83.3:	м

Установка	Аксессуары
Панель или 35-мм	-Маркировка катушки и
монтажное гнездо	модули подавления

(EN 60715)
электромагнитного импульса

- Перемычка
- Пластмассовый

удерживаюший зажим

Модель	Розетка	Реле	Описание	У
99.80	95.93 .3	$\mathbf{4 0 . 3 1}$	Розетка с винтовым зажимом	П
	95.95 .3	40.51	-Верхние клеммы - Контакты	м
		40.52	-Нижние клеммы - катушка	(Е
		40.61		

Установка

Панель или 35-мм монтажное гнездо
(EN 60715)

Аксессуары

-Маркировка катушки и модули подавления электромагнитного импульса - Перемычка
-Пластмассовый
удерживающий зажим

См. стр. 12

STERE	Модель	Розетка	Реле	Описание	Установка	Аксессуары
	99.02	95.55	$\begin{aligned} & 40.51 \\ & 40.52 \\ & 40.61 \end{aligned}$	Розетка с пружинным зажимом - Для прочных соединений кабеля -Верхние клеммы - Контакты -Нижние клеммы - катушка	Панель или 35-мм монтажное гнездо (EN 60715)	-Маркировка катушки и модули подавления электромагнитного импульса -Модульные таймеры - Пластмассовый удерживающий зажим

См. стр. 13

См. стр. 14

	Модель	Розетка	Реле	Описание	Установка	Аксессуары
-	95.65	40.51	Розетка с пружинным зажимом	Панель или 35-мм монтажное гнездо (ЕN 60715)	- Металлический зажим	

См. стр. 15

95.13.2

См. стр. 16

Модель	Розетка	Реле	Описание	Установка	Аксессуары
-	95.13 .2	40.31	Розетка рев	Для печатного	-Металлический зажим
		40.41		монтажа	-Пластмассовый зажим
-	95.15 .2	40.51			
		40.52			
		40.61			

95 Серия - Розетки и аксессуары для реле 40 Серии

060.72

8-полюсная перемычка для розеток серии 95.03 и 95.05
Номинальные значения Для реле 40.51 перекидной контакт: 21-12-14.
95.03 (синий) 95.03 .0 (ЧерНый) 95.05 (синий) 95.05 .0 (Черный)

Розетка с винтовым зажимом для установки на поверхность или на 35 мм рейку
Тип реле
Аксессуары
Металлическая клипса
Пластмассовый удерживающий зажим
(поставлнется с розеткой - код корпуса SPA)
8-полюсная перемычка
Маркировочная этикетка
Модули (см. таблицу ниже)
Модульные таймеры (см. таблицу ниже)
Список маркировочных этикеток для пластмассовых клипс 095.01, 72 этикетки, 6×12 мм
Технические параметры

Номинальные значения	10
Изоляция	6

Изоляцин	6
Категория защиты	IP
Температура окружающего воздуха	${ }^{\circ} \mathrm{C}$

(44) Момент завинчивания Нм

Длина зачистки провода мм 8
Макс. размер провода для розеток 95.03 и 95.05
MM 2
AWG

095.71				
095.01	095.01 .0	095.01	095.01 .0	
095.18	095.18 .0	095.18	095.18 .0	
095.00 .4				
99.02				
86.30				

10 A-250 B *
6 кВт (1.2/50 мкс) между катушкой и контактами
IP 20
$-40 \ldots+70$
0.5

8
одножильный провод \quad многожильный провод

$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

$1 \times 12 / 2 \times 14$

* При токе > 10 А необходимо подключить разъем с контактами в параллель (21 с 11 , 24 с 14, 22 с 12).

095.18 (синий) $\quad 095.18 .0$ (черный)

10 A - 250 B

Модульные таймеры 86 серии

$(12 \ldots 24) \mathrm{B} \mathrm{AG/DC} ;$ Монофункциональный: AI, DI; (0.05с...100мин.)	86.30 .0 .024 .0000
$(110 . . .125) \mathrm{B} \mathrm{AC} ;$ Монофункциональный: AI, DI; (0.05с..100мин.)	86.30 .8 .120 .0000
$(230 \ldots 240) \mathrm{B} \mathrm{AC} ;$ Монофункциональный: AI, DI; (0.05с...100мин.)	86.30 .8 .240 .0000

Сертификация
(В соответствии с типом): $C \in$ PG с I $_{\text {US }}^{\text {us }}$
маркировка катушки 99.02, модули подавления электромагнитного импульса для розеток 95.03 и 95.05

диод (+А1, стандартная полярность)	(6...220)B DC
СВЕТОДИОД	(6...24)B DC/AC
СВЕТОДИОД	(28...60)B DC/AC
СВЕТОДИОД	(110...240)B DC/AC
СВЕТОДИОД + диод (+A1, стандартная полярность) (6...24)В DC	
СВЕТОДИОД + диод (+А1, стандартная полярность) (28...60)В DC	
СВЕТОДИОД + Варистор (6...24)В DC/AC	
СВЕТОДИОД + Варистор (28...60)В DC/AC	
СВЕТОДИОД + Варистор (110...240)В DC/AC	
RC-цепь (6...24)B DC/AC	
RC-цепь (28...60)B DC/AC	
RC-цепь	(110...240)B DC/AC
Байпас начального тока	(110...240)B AC

Сертификация (В соответствии с типом)

Модули в черном корпусе поставляются по заказу.
99.02.3.000.00
99.02.0.024.59
99.02.0.060.59
99.02.0.230.59
99.02.9.024.99
99.02.9.060.99
99.02.9.220.99
99.02.0.024.98
99.02.0.060.98
99.02.0.230.98
99.02.0.024.09
99.02.0.060.09
99.02.0.230.09
99.02.8.230.07

060.72 * При токе > 10 А необходимо подключить разъем с контактами в параллель (21 с 11, 24 с 14, 22 с 12). Для реле 40.51 перекидной контакт: 21-12-14.
 95 Серия - Розетки и аксессуары для реле 40 Серии

060.72

* При токе > 10 А необходимо подключить разъем с контактами в параллель (21 с 11 , 24 с 14, 22 с 12). Для реле 40.51 перекидной контакт: 21-12-14.

8-палюсная перемычка для розеток серии 95.93 .3 и 95.95 .3	095.08 (синий)	095.08 .0 (черный)
Номинальные значения	$10 \mathrm{~A}-250 \mathrm{~B}$	

Сертификация (В соответствии с типом):

PG * Модули в черном корпусе поставляются по заказу.

Зеленый светодиод -
стандартная
комплектация.
Красный светодиод -

маркировка катушки 99.80, модули подавления электромагнитного импульса для розеток 95.93.3 и 95.95.3

диод (+А1, стандартная полярность)	(6...220)B DC
СВЕТОДИОД	(6...24)B DC/AC
СВЕТОДИОД	(28...60)B DC/AC
СВЕТОДИОД	(110...240)B DC/AC
СВЕТОДИОД + диод (+А1, стандартн	(6...24)B DC
СВЕТОДИОД + диод (+А1, стандартн	сть) (28...60)B DC
СВЕТОДИОД + диод (+А1, стандартная полярность)(110...220)В DC	
СВЕТОДИОД + Варистор	(6...24)B DC/AC
СВЕТОДИОД + Варистор	(28...60)B DC/AC
СВЕТОДИОД + Варистор	(110...240)B DC/AC
RC-цепь	(6...24)B DC/AC
RC-цепь	(28...60)B DC/AC
RC-цепь	(110...240)B DC/AC
Байпас начального тока	(110...240)B AC

Голубой*
99.80.3.000.00
99.80.0.024.59
99.80.0.060.59
99.80.0.230.59
99.80.9.024.99
99.80.9.060.99
99.80.9.220.99
99.80.0.024.98
99.80.0.060.98
99.80.0.230.98
99.80.0.024.09
99.80.0.060.09
99.80.0.230.09
99.80.8.230.07
поставляется по заказу.

* При токе > 10 А необходимо подключить разъем с контактами в параллель (21 с 11 , 24 с 14, 22 с 12). Длн реле 40.51 перекидной контакт: 21-12-14.

060.72

Модульные таймеры 86 серии

(12...24)B AC/DC; Монофункциональный: AI, DI; (0.05с...100мин.)	86.30 .0 .024 .0000
(110...125)В AC; Монофункциональный: AI, DI; (0.05с...100мин.)	86.30 .8 .120 .0000
$(230 \ldots 240)$ В AC; Монофункциональный: AI, DI; (0.05с...100мин.)	86.30 .8 .240 .0000

Сертификация
(В соответствии с типом): (E PG cTIU US

Сертификация (В соответствии с типом):

Модули в черном корпусе поставляются по заказу.

маркировка катушки 99.02, модули подавления электромагнитного импульса для розеток 95.55

Сертификация (В соответствии с типом)

060.72

99.80

Сертификация (В соответствии с типом):

PG

* Модули в черном корпусе поставляютсн по заказу.

Зеленый светодиод стандартная комплектация.
Красный светодиод -
маркировка катушки 99.80, модули подавления электромагнитного импульса для розеток 95.55.3

диод (+А1, стандартная полярность)	(6...220)B DC
СВЕТОДИОД	(6...24)B DC/AC
СВЕТОДИОД	(28...60) B DC/AC
СВЕТОДИОД	(110...240)B DC/AC
СВЕТОДИОД + диод (+A1, стандартная полярность) (6...24)В DC	
СВЕТОДИОД + диод (+А1, стандартная полярность) (28...60)В DC	
СВЕТОДИОД + диод (+А1, стандартная полярность) (110...220)В DC	
СВЕТОДИОД + Варистор	(6...24)B DC/AC
СВЕТОДИОД + Варистор	(28...60)B DC/AC
СВЕТОДИОД + Варистор	(110...240)B DC/AC
RC-цепь	(6..24)B DC/AC
RC-цепь	(28...60)B DC/AC
RC-цепь	(110...240)B DC/AC
Байпас начального тока	(110...240)B AC

Голубой*

99.80.3.000.00
99.80.0.024.59
99.80.0.060.59
99.80.0.230.59
99.80.9.024.99
99.80.9.060.99
99.80.9.220.99
99.80.0.024.98
99.80.0.060.98
99.80.0.230.98
99.80.0.024.09
99.80.0.060.09
99.80.0.230.09
99.80.8.230.07

поставляется по заказу.

(В соответствии с типом):

* Модули в черном
корпусе поставляются по заказу.

Зеленый светодиод стандартная комплектация. Красный светодиод поставляется по заказу.

маркировка катушки 99.01, модули подавления электромагнитного импульса для розеток 95.63

		Голубой*
диод (+А1, стандартная полярность)	(6...220)B DC	99.01.3.000.00
диод (+А2, нестандартная полярность)	(6...220)B DC	99.01.2.000.00
СВЕТОДИОД	(6...24)B DC/AC	99.01.0.024.59
СВЕТОДИОД	(28...60)B DC/AC	99.01.0.060.59
СВЕТОДИОД	(110...240)B DC/AC	99.01.0.230.59
СВЕТОДИОД + диод (+А1, стандартная полярность)	(6...24)B DC	99.01.9.024.99
СВЕТОДИОД + диод (+А1, стандартная полярность)	(28...60)B DC	99.01.9.060.99
СВЕТОДИОД + диод (+А1, стандартная полярность)	(110...220)B DC	99.01.9.220.99
СВЕТОДИОД + диод (+А2, нестандартная полярность)	(6...24)B DC	99.01.9.024.79
СВЕТОДИОД + диод (+А2, нестандартная полярность)	(28..60)B DC	99.01.9.060.79
СВЕТОДИОД + диод (+А2, нестандартная полярность)	(110...220)B DC	99.01.9.220.79
СВЕТОДИОД + Варистор	(6...24)B DC/AC	99.01.0.024.98
СВЕТОДИОД + Варистор	(28...60)B DC/AC	99.01.0.060.98
СВЕТОДИОД + Варистор	(110...240)B DC/AC	99.01.0.230.98
RC-цепь	(6...24)B DC/AC	99.01.0.024.09
RC-цепь	(28...60)B DC/AC	99.01.0.060.09
RC-цепь	(110...240)B DC/AC	99.01.0.230.09
Байпас начального тока	(110...240)B AC	99.01.8.230.07

95.13 .2

95.15.2

Сертификация (В соответствии с типом)

рев розетка с удерживающим зажимом	95.13 .2 (синий) 95.13 .20 (черный)	95.15 .2 (синий) 95.15 .20 (черный)
Тип реле	40.31, 40.41	40.51, 40.52, 40.61
Аксессуары		
Металлическая клипса (поставляется с розеткой - код корпуса SMA)	095.51	
Пластмассовый удерживающий зажим	095.52	
Технические параметры		
Номинальные значе ния	10A-250 B *	
Изоляция	6 кВт (1.2/50 мкс) между катушкой и контактами	
Категория защиты	IP 20	
Температура окружающего воздуха ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	

При токе > 10 А необходимо подключить разъем с контактами в параллель (21 с 11,24 с 14, 22 с 12). Для реле 40.51 перекидной контакт: 21-12-14.

40.31

95.13 .2

Вид сбоку

40.51

40.52

95.15 .2

Вид сбоку

Коды на упаковке

Кодировка зажимов и упаковки розеток.

Варианты кодировки обозначаются тремя последними буквами

41 Серия - Низкопрофильные РСВ реле 8-12-16 А

Характеристики

1 и 2 группы контактов -
Низкопрофильные (высота 15,7 мм)
41.31-1 группа контактов 12 А (выводы с шагом 3,5 мм)
41.52-2 группы контактов 8 A (выводы с шагом 5 мм)
41.61-1 группа контактов 16 A (выводы с шагом 5 мм)
Для печатного монтажа - напрямую или для использования с рев розеткой

- катушка DC - 400 мВт

8 мм, изоляция 6 кВт (1.2/50 $\mu \mathrm{s}$)
катушка - контакты
Материал контактов - бескадмиевый Уровень защиты: стандарт RT II, (опция RT III)

По кЛассИФИКации UL, Мощность в л.с.и НОМИНАЛ КОНТАКТОв в ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток

Ном. напряжение/Макс. напряжение	B~
Номинальная нагрузка $A C 1$	BA

Номинальнан нагрузка(230 B~) AC15 BA
Дотустиман мощностьодносазнюо двигателн (230 B) кBт
Отключающая способность $\mathrm{DC} 1: 30 / 110 / 220 \mathrm{BA}$
Минимальный ток переключения мВт(B/МА)
Стандартный материал контакта
Характеристики катушки

41.31 - Выводы с шагом 3.5 мм - 1 группа контактов 12 А - Напрғмую или через монтажное гнездо РСВ	41.52 - Выводы с шагом 5 мм - 2 группы контактав 8 A - Напрямую или через монтажное гнездо РСВ	41.61 - Выводы с шагом 5 мм - 1 группа контактов 16 A - Напрямую или через монтажное гнездо РСВ
Вид сбоку	Вид сбоку	 Вид сбоку
1 перекидной контакт (SPDT)	2 перекидных контакта (DPDT)	1 перекидной контакт (SPDT)
12/25	8/15	16/30
250/400	250/400	250/400
3,000	2,000	4,000
600	400	750
0.5	0.3	0.5
12/0.3/0.12	8/0.3/0.12	16/0.3/0.12
300 (5/5)	300 (5/5)	300 (5/5)
AgNi	AgNi	AgNi
-	-	-
12-24-48-60-110	12-24-48-60-110	12-24-48-60-110
-/0.4	-/0.4	-/0.4
-	-	-
(0.7..1.5) U_{N}	(0.7..1.5) U_{N}	(0.7..1.5) U_{N}
$-/ 0.4 \mathrm{U}_{\mathrm{N}}$	$-/ 0.4 U_{N}$	$-/ 0.4 U_{N}$
$-/ 0.1 U_{N}$	$-/ 0.1 U_{N}$	$-/ 0.1 U_{N}$
$-/ 30 \cdot 10^{6}$	$-/ 30 \cdot 10^{6}$	$-/ 30 \cdot 10^{6}$
$150 \cdot 10^{3}$	$80 \cdot 10^{3}$	$70 \cdot 10^{3}$
5/4	5/4	5/4
6 (8 mm)	6 (8 mm)	6 (8 mm)
1,000	1,000	1,000
-40...+85	-40...+85	-40...+85
RT II	RT II	RT II
$\text { PG RINA } c \boldsymbol{D}_{\text {US }}^{\infty} \text { 促 }$		

41 Серия - Низкопрофильные твердотельные РСВ реле 3 - 5 А

Характеристики

Твердотельные реле для монтажа напрямую на печатную плату или через рев розетку
Возможность переключения выхода одной цепи
-5 A 24 B DC

- 3 A 240 B AC

Бесшумное скоростное переключение, большая долговечность
Светодиодный индикатор
Низкопрофильные, высота 15.7 мм
Влагонепроницаемые: RT III
Изоляция на 2500 V АС, ввод-вывод
41.81-9024

5 A, 24 В на выходе DC на переключение
РСВ ипи розетки 93 серии

Выходная цепь
Контактная группа (конфигурация)
Номинальный ток/ Макс. пиковый ток (10 ms) А
Нам. напряжениеМакс. блокирующее напряжение В
Диапазон напряжений на переключение B Минимальный ток переключения
Макс. ток утечки в состоянии ВЫІКЛ.
Макс. падение напряжения в состоянии ВКЛ. В
Входная цепь
Номинальное напряжение
Рабочий диапазон
Ток управления
Напряжение отключения
Полное сопротивление
Технические параметры
Время вкл./выкл
Электринескаяпрочность между входом/выходом V AC
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$
Категория защиты
Сертификация (в соответствии с типом)
41.81-8240

- 3 A, 240 В на выходе $A C$ на переключение Переключение при переходе через нуль PCB ипи розетки 93 серии

Вид сбоку

Информация по заказам

Электромеханическое реле (EMR)

Пример: 41-я серия низкопрофильных PCB реле, 2 перекидных контакта (DPDT), напряжение катушки 24 B DC.
 41.31, 12 A
41.61, 16 A
$2=2$ перекидных контакта для 41.52, 8 A

Тип катушки
9 = DC

Напряжение катушки
См. характеристики катушки

Выбор характеристик и опций: возможны комбинации только в одном ряду. Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	A	B	C	D
41.31	DC	$\mathbf{0 - 4 - 5}$	$\mathbf{0}-3$	$\mathbf{1}$	$\mathbf{0 - 1}$
41.52	DC	$\mathbf{0 - 5}$	$\mathbf{0 - 3}$	$\mathbf{1}$	$\mathbf{0 - 1}$
41.61	DC	$\mathbf{0 - 4}$	$\mathbf{0 - 3}$	$\mathbf{1}$	$\mathbf{0 - 1}$

Твердотельное реле (SSR)
Пример: 41-я серия твердотельных реле, выход 5 A, напряжение входной цепи 24 B DC.

Электромеханическое реле

Технические параметры

Изоляция в соответствии с EN 61810-1 ed					
	1 контакт			2 контакт	
Номинальное напряжение питания VAC	230/400			230/400	
Расчетное напряжение изоляции VAC	250	400		250	
Уровень загрязнения	3	2		3	2
Изоляция между катушкой и контактной группой					
Тип изоляции	Усиленный (8 mm)			Усиленный (8 mm)	
Категория перегрузки	III			III	
Расчетное импульсное напряжение kV (1.2/50 мкс)	6			6	
Электрическая прочность VAC	4,000			4,000	
Изоляция между соседними контактами					
Тип изоляции	-			Базовый	
Категория перегрузки	-			III	
Расчетное импульсное напряжение kV (1.2/50 мкс)	-			4	
Электрическая прочность VAC	-			2,000	
Изоляция между разомкнутыми контактами					
Тип расцепления	Микро-расцепление			Микро-расцепление	
Электрическая прочность V AC/kV (1.2/50 мкс)	1,000/1.5			1,000/1.5	
Устойчивость к перепадам					
Разрыв ($5 \ldots 50$) нс, 5 кГц, на А1-А2	EN 61000-4-4			уровень 4 (4 kV)	
Импульс (1.2/50 мкс) на А1-A2 (при дифференциальном включении)	EN 61000-4-5			уровень 3 (2 kV)	
Прочее					
	$2 / 5$				
Виброустойчивость (5...55 Гц,): НО/Н3 g	15/2				
Ударопрачность g	16				
Потери мощности без нагрузки Вт	0.4				
при номинальном токе Вт	$1.7 \text { (41.31) }$		$1.2 \text { (41.52) }$		$1.8 \text { (41.61) }$
Рекомендуемое расстояние между реле но плате мм	≥ 5				

Характеристика контактов

F 41-Электрическая долговечность (АС) при ном. нагрузке Типы 41.31/61

F41- Электрическая долговечность (АС) при ном. нагрузке Типы 41.52

H 41- Макс. отключающая способность DC1

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1. Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики катушки

Параметры катушки DC

Номин. напрнж. U_{N}	Код катушки	Рабочий диапазон		Сопротивл. R	Потребл. I при U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max }$		
B		B	B	Ω	MA
12	9.012	8.4	18	360	33.3
24	9.024	16.8	36	1,440	16.7
48	9.048	33.6	72	5,760	8.3
60	9.060	42	90	9,000	6.6
110	9.110	77	165	24,200	4.5

R 41- Отношение рабочего диапазона для DC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Твердотельное реле

Технические пара

Прочее		41.81-9024	41.81-8240	
Потери мощности	бт	0.25	0.25	
	без нагрузки	при номинапьном токе	Вт	1.75

Входные параметры

Входные данные - версии для DC

Номин. напряж. U_{N}	Код входной цепи	Рабочий диапазон		Напряжение отключения	Полное сопротивление	Tok управления I при U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$			
B		B	B	B	Ω	mA
12	7.012	8	17	4	1,550	5.5
24	7.024	14	32	9	2,600	9

Выходные параметры

L 41 - Выходной ток при темп. окружающей среды SSR - для DC 5 ADC на выходе

L 41 - Выходной ток при темп. окружающей среды

SSR - для AC 3 А на выходе

Розетка на DIN-рейку с винтовым зажимом: 35 мм (EN 60715)

Напряжение сети		Тип реле	Тип розетки
6 B AC/DC		41.52.9.005.0010 или 41.61.9.005.0010	93.02.0.024
$12 \mathrm{~B} \mathrm{AC/DC}$		41.52.9.012.0010 или 41.61.9.012.0010	93.02.0.024
24 B AC/DC		41.52/61.9.024.0010 или 41.81.7.024.xxxx	93.02.0.024
60 B AC/DC		41.52.9.060.0010 или 41.61.9.060.0010	93.02.0.060
(110...125)B AC/DC		41.52.9.110.0010 или 41.61.9.110.0010	93.02.0.125
(220...240)B AC/DC		41.52.9.110.0010 или 41.61.9.110.0010	93.02.0.240
(230...240)V AC		41.52.9.110.0010 или 41.61.9.110.0010	93.02.8.230
6 B DC		41.52.9.005.0010 или 41.61.9.005.0010	93.02.7.024
12 B DC		41.52/61.9.012.0010 или 41.81.7.012.xxxx	93.02.7.024
24 B DC		41.52/61.9.024.0010 или 41.81.7.024.xxxx	93.02.7.024
48 B DC		41.52.9.048.0010 или 41.61.9.048.0010	93.02.7.060
60 B DC		41.52.9.060.0010 или 41.61.9.060.0010	93.02.7.060
Аксессуары			
8-полюсная перемычка		093.08 (см. спецификации на следующей странице)	
Ппастмассовый разделитель		093.01 (см. спецификации на следующей странице)	
Блок маркировок, 72 знака		060.72 (см. спецификации на следующей странице)	
Технические параметры			
Номинальные параметры		10A-250B	
Изоляция		6 kBt (1.2/50 мкс) между обмоткой и контактами	
Категория защиты		IP 20	
Температура окружающей среды $\left(\mathrm{U}_{\mathrm{N}} \leq 60 \mathrm{~V} />60 \mathrm{~V}\right)$	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70 /-40 \ldots+55$	
(4)3 Момент затяжки винта	Нм	0.5	
Длина зачистки провода	MM	8	
Макс. размер провода		одножильный провод	многожильный провод
для розетки 93.02	mm^{2}	1x6 / 2x2.5	1x4/2x2.5
	AWG	1x10 / 2x14	1x12 / 2x14

93 Серия - Розетки и аксессуары для реле 41 Серии

Аксессуары

093.08 Сертификация (В соответствии с типом): c렌	8-полюсная перемычка для розеток 93.02 и 93.52	093.08 (синий)	093.08 .0 (черный)	093.08 .1 (красный)
	Номинапьные значения	10 A - 250 B		
	Пластиковый разделитель дпя розеток 93.02 и 93.52	093.01		
093.01	Толщина 2 мм, необходимо устанавливать в начале и в конце груплы интерфейсов. Может применяться для визуального разделения групп, обязательно следует использовать для: - защитного разделения интерфейсов соседних ПЛК с различным напряжением согласно требованиям VDE 0106-101 - защиты перемычек			
- 7 T17	Блок маркировок для $38 . \times 2$ пластик, 72 знака, 6×12 мм	060.72		

95 Серия - Розетки и аксессуары для реле 41 Серии

95.13 .2

95.15 .2

Сертификация

* При токе > 10 А необходимо подключить разъем с контактами в параллель (21 с 11,24 с 14, 22 с 12). (11) PG (H1) $c)_{\text {US }}^{*}$

95.15.2

Вид сбоку

Коды на упаковке

Кодировка зажимов и упаковки розеток.
Варианты кодировки обозначаются тремя последними буквами:

43 Серия - Низкопрофильные РСВ реле 10-16 А

Характеристики

1 группа контактов - низкопрофильные
(высота 15.4 мм)
$43.41 \quad-1$ группа контактов 10 A
(выводы с шагом 3.2 мм)
$43.41-0300-1$ перекидной контакт НО -10 A
(выводы с шагом 5 мм)
$43.61-0300-1$ перекидной контакт НО -16 A
(выводы с шагом 5 мм)

Для печатного монтажа - напрямую или для использования с РСВ розеткой (версия 43.41)

- Чувствительная катушка DC:
- 250 мВт (версия 10 A)
- 400 мВт (версия 16 A)

Очень высокий уровень изоляция между катушкой и контактами 10 мм, изоляция 6 кВт (1.2/50 $\mu \mathrm{s}$)
Контакты из безкадмиевого материала (предпочтительная версия) Уровень защиты: стандарт RT II, (опция RT III)

ПО КЛАССИФИКацИИ UL, МоЩНОСТь в л.С.И НОМИНАЛ КОНТАКТОВ в ДЕЖУРНОМ РЕЖИМЕ, СМ.
"ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток

Ном. напряжение/Макс. напряжение	B~
Номинальная нагрузка $\mathrm{AC1}$	BA

Номинальная нагрузка(230 B~) AC15 BA
Допустимая мощность односазного двиателя (230 B-) кBT

Отключающая способность DC1: 30/110/220 BA
Минимальный ток переключения мВт(B/МА)

Стандартный материал контакта
Характеристики катушки

Номин. напряж. ($\left.\mathrm{U}_{\mathrm{N}}\right)$	$\mathrm{VAC}(50 / 60$ Гц)
	V DC
Ном. мощн. AC/DC	$\mathrm{BA}(50$ Гц)/Bт
Рабочий диапазон	AC
	DC
Напряжение удержания	$\mathrm{AC} / \mathrm{DC}$
Напряжение отключения	$\mathrm{AC} / \mathrm{DC}$

Технические параметры

Механическая долговечность AC/DC циклов
Электр. договечность при ном. нагрузке AC1 циклов
Время вкл/выкл мс

Изоляция между катушкой и контактами $(1.250 \mu \mathrm{~s}) \mathrm{kB}$
Эгектриесхадпроннстьмеждуоткрыпымиконпактами VAC
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$
Категория защиты
Сертификация (в соответствии с типом)

Информация по заказам

Пример: 43 -я серия низкопрофильных PCB реле, 1 перекидных контокта (SPDT), напряжение катушки 24 B DC.

Технические параметры

Изоляция в соответствии с EN 61810-1 ed		
Номинальное напряжение питания VAC	230/400	
Расчетное напряжение изоляции VAC	250	400
Уровень загрязнения	3	2
Изоляция между катушкой и контактной группой		
Тип изоляции	Усиленный (10 mm)	
Категория перегрузки	III	
Расчетное импульсное напряжение kV (1.2/50 мкс)	6	
Электрическая прочность VAC	4,000	
Изоляция между разомкнутыми контактами		
Тип расцепления	Микро-расцепление	
Электрическая прочность V AC/kV (1.2/50 мкс)	1,000/1.5	
Устойчивость к перепадам		
Разрыв (5..50) нс, 5 кГц, на А1-А2	EN 61000-4-4	уровень 4 (4 kV)
Импульс (1.2/50 мкс) на А1-A2 (при дифференциальном включении)	EN 61000-4-5	уровень 3 (2 kV)
Прочее		
Время дребезга: $\mathrm{HO} / \mathrm{H} 3$ (MC	3/6	
Виброустойчивость (5...55 Гц,): НО/НЗ g	15/3	
Ударопрачность g	15	
Потери мощности	0.25 (43.41)	0.4 (43.61)
	1.3 (43.41)	2 (43.61)
Рекомендуемое расстояние между реле но плате мм	≥ 5	

Характеристика контактов

F 43 - Электрическая долговечность (AC) при ном. нагрузке

H 43 - Макс. отключающая способность DC1

- При переключении активной нагрузки (DC1) значения напряжения и тока которой нахадятся в нижней части графика (под характеристикой), величина ожидаемого электрического ресурса для 43.41 составит $100 \cdot 10^{3}$ циклов, и $\geq 50 \cdot 10^{3}$ циклов для 43.61
- В случае нагрузок DC13 подключение диода параллельно нагрузке позволит пол учить так ой же электриче ский ресурс, кок и для нагрузки DC1
При меча ние: время отключения нагрузки возрастет.

Характеристики катушки

Версия дла DC - 0.25 Вт - версия с повышенной
чувсгвитепьностыо, (тип 43.41)

Номин.	Код	Рабочий диапазон		Сопротивл.	Потребл.
U_{N}		$\mathrm{U}_{\text {min }}$	$U_{\max }$	R	
B		B	B	Ω	MA
3	7.003	2.2	4.5	36	83.5
6	7.006	4.2	9	150	40
9	7.009	6.5	13.5	324	27.7
12	7.012	8.4	18	580	20.7
18	7.018	13	27	1,300	13.8
24	7.024	16.8	36	2,200	10.9
36	7.036	25.2	54	5,200	6.9
48	7.048	33.6	72	9,200	5.2

Версия для DC - 0.4 Вт - стандартная версия, (тип 43.61)

	Код	Рабочий диапазон		Сопротивл.	Потребл.
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	
B		B	B	Ω	MA
12	9.012	8.4	14.4	360	33.3
24	9.024	16.8	28.8	1,400	17.1
48	9.048	33.6	57.6	5,760	8.3

R 43 - Отношение рабочего диапазона для DC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

	РСВ розетка (только для перекидных контактов)	95.23 (синий)	95.23 .0 (черный)
	Тип реле	43.41	43.41
	Аксессуары		
95.23	Металлическая клипса-держатель (поставлнется с розеткой - код на упаковке SNA)	095.43	
Сертификация (В соответствии с типом):			
	Технические параметры		
(1) PG cin ${ }_{\text {US }}$	Номинальные значения	$10 \mathrm{~A}-250 \mathrm{~V}$	
	Изоляция	6 кВт (1.2/50 мкс) между катушкой и контактами	
	Категория защиты	IP 20	
	Температура окружающего воздуха	$-40 . . .+70$	

43.41

Вид сбоку

Коды на упаковке

Кодировка зажимов и упаковки розеток.

Варианты кодировки обозначаются тремя последними буквами:

44 Серия - Миниатюрные РСВ реле 6-10 A

Характеристики

Серия реле с 2 группами контактов
44.52-2 группы контактов 6 A (выводы с шагом 5 мм)
44.62-2 группы контактов 10 A (выводы с шагом 5 мм)
Для монтажа напрямую на монтажную плату или через РСВ розетку Для установки через розетки с пружинным или винтовым зажимами

- Высокий уровень физического разделения между соседними контактами
катушка DC (стандартная или чувствительная версия)
- Материал контактов - бескадмиевый - 8 мм, изоляция 6 кВт ($1.2 / 50 \mu \mathrm{~s}$) катушка - контакть По классификации UL (определенные комбинации реле/ розеток)
Уровень защиты: RT II
Для использования с розетками 95 серии модулями подавления электромагнитного импульса и таймерами 86 серия

ПО КЛАССИФИКАЦИИ UL, МощНОСТь в Л.С.И НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V
Контактные характеристики
Контактная группа (конфигурация)

Информация по заказам

Пример: 44-я серия реле для печатного монтажа с 2 перекидными контактами (DPDT) 10 A, обмотка но номинальное напряжение 24 В DC.

Технические параметры

Изоляция в соответствии с EN 61810-1 ed		
Номинальное напряжение питания VAC	230/400	
Расчетное напряжение изоляции VAC	250	400
Уровень загрязнения	3	2
Изоляция между катушкой и контактной группой		
Тип изоляции	Усиленный (8 mm)	
Категория перегрузки	III	
Расчетное импульсное напряжение kV (1.2/50 мкс)	6	
Электрическая прочность VAC	4,000	
Изоляция между соседними контактами		
Тип изоляции	Базовый	
Категория перегрузки	III	
Расчетное импульсное напряжение kV (1.2/50 мкс)	4	
Электрическая прочность VAC	2,500	
Изоляция между разомкнутыми контактами		
Тип расцепления	Микро-расцепление	
Электрическая прочность V AC/kV (1.2/50 мкс)	1,000/1.5	
Устойчивость к перепадам		
Разрыв ($5 \ldots 50$) нс, 5 кГц, на А1-А2	EN 61000-4-4	уровень 4 (4 kV)
Импульс (1.2/50 мкс) на А1-A2 (при дифференциальном включении)	EN 61000-4-5	уровень 3 (2 kV)
Прочее		
Время дребезга: НО/НЗ мс	4/4	
Виброустойчивость (5..55Гц,): НО/Н3 g	15/12	
Ударопрачность g	16	
Потери мощности	0.6	
	1.2 (44.52)	2.7 (44.62)
Рекомендуемое расстояние между реле на плате мм	≥ 5	

Характеристика контактов

F 44 - Электрическая долговечность (AC) при ном. нагрузке

Н 44 - Макс. отключающая способность DC1

- При переключении активной нагрузки (DC1) и величине тока и напрнжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1.
Примечание: Время срабатыванин под нагрузкой можно будет увеличить.

Версия для DC (0.5 Вт - версия с повышенной чувствительносью)

Номин.	Код	Рабочий диапазон		Сопротивл.	Потребл.
U_{N}		$\mathrm{U}_{\text {min }}{ }^{*}$	$\mathrm{U}_{\max }$	R	
B		B	B	Ω	MA
6	7.006	4.4	10.2	75	80
9	7.009	6.6	15.3	160	56
12	7.012	8.8	20.4	300	40
14	7.014	10.2	23.8	400	35
24	7.024	17.5	40.8	1,200	20
28	7.028	20.5	47.6	1,600	17.5
48	7.048	35	81.6	4,800	10
60	7.060	43.8	102	7,200	8.4
110	7.110	80.3	187	23,500	4.7
125	7.125	100	219	32,000	3.9

${ }^{*} U_{\min }=0.8 U_{N}$ для 44.62

R 44 - Отношение рабочего диапазона для DC к температуре окр. среды - Чувствительная катушка

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

См. стр. 5

См. стр. 6

Модель	Розетка	Реле	Описание
99.80	95.95.3	$\begin{aligned} & 44.52 \\ & 44.62 \end{aligned}$	Розетка с винтовым зажимом -Верхние клеммы - Контакты -Нижние клеммы - Катушка

Модель	Розетка	Реле	Описание
99.80	95.85 .3	44.52	Розетка с винтовым зажимом
		44.62	

Установка	Аксессуары
Панель или 35-мм	-Маркировка обмотки и
монтажное гнездо	модули подавления
(EN 60715)	электромагнитного импульса
	-Перемычка
	-Модульные таймеры
	-Пластмассовый
	удерживающий зажим

Установка	Аксессуары
Панель или 35-мм	-Маркировка обмотки и
монтажное гнездо	модули подавления
(EN 60715)	ээектромагнитного импульса
	-Пластмассовый
	удерживающий зажим

См. стр. 7

См. стр. 8

STERED	Модель	Розетка	Реле	Описание	Установка	Аксессуары
	99.80	95.55.3	$\begin{aligned} & 44.52 \\ & 44.62 \end{aligned}$	Розетка с пружинным зажимом - Для прочных соединений кабеля -Верхние клеммы - Контакты - Нижние клеммы - Катушка	Панель или $35-$-мм монтажное гнездо (EN 60715)	-Маркировка обмотки и модули подавления электромагнитного импульса - Пластмассовый удерживающий зажим
95.55.3	1					

См. стр. 9

См. стр. 10

См. стр. 11

Модель	Розетка	Реле	Описание	Установка	Аксессуары
-	95.15 .2	44.52	Розетка рев	Для печатного монтажа	-Металлический зажим

Верх ни е клеммы

Розетка с винтовым зажимом для установки на поверхность или на 35мм рейку	95.05 (синий)	95.05.0 (черный)
Тип реле	44.52, 44.62	
Аксессуары		
Металлическая клипса	095.71	
Пластмассовый удерживающий зажим (поставляется с розеткой - код корпуса SPA)	095.01	095.01.0
8-полюсная перемычка	095.18	095.18.0
Маркировочная этикетка	095.00.4	
Модули (см. таблицу ниже)	99.02	
Модульные таймеры (см. таблицу ниже)	86.30	
Список маркировочных этикеток для пластмассовых клипс 095.01, 72 этикетки, 6×12 мм	060.72	
Технические параметры		
Номинальные значения	10A-250B	
Изоляция	6 кВт (1.2/50 мкс) между катушкой и контактами	
Категория защиты	IP 20	
Температура окружающего воздуха ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	
(4) Момент завинчивания Hm	0.5	
Длина зачистки провода мм	8	
Макс. размер провода для розеток 95.05	одножильный провод	многожильный провод
$M M M ~^{2}$	1x6/2x2.5	1x4 / 2x2.5
AWG	1x10/2x14	1x12/2x14

8-полюсная перемычка для розеток серии 95.05
095.18 (синий) 095.18 .0 (черный)
Номинальные значения

Модульные таймеры 86 серии
(12...24)B AC/DC; Монофункциональный: AI, DI; (0.05с...100мин.) 86.30.0.024.0000

Сертификация
(В соответствии с типом): \subset ($\mathcal{C} \boldsymbol{I}_{\text {Us }}^{\text {(}}$

Сертификация (В соответствии с типом):

${ }_{\mathrm{c}} \mathrm{TH}_{\mathrm{US}}^{\circ}$

маркировка катушки 99.02, модули подавления электромагнитного импульса для розеток 95.05

диод (+А1, стандартная полярность) (6..220)В DG	99.02.3.000.00
СВЕТОДИОД (6...24)В DC/AC	99.02.0.024.59
СВЕТОДИОД (28...60)В DCIAC	99.02.0.060.59
СВЕТОДИОД (110...240)В DC/AC	99.02.0.230.59
СВЕТОДИОД + диод (+А1, стандартная полярность) (6...24)В DC	99.02.9.024.99
СВЕТОДИОД + диод (+А1, стандартная полярность) (28...60)В DC	99.02.9.060.99
СВЕТОДИОД + диод (+А1, стандартная полярность) (110...220)В DC	99.02.9.220.99
СВЕТОДИОД + Варистор (6..24)В DC/AC	99.02.0.024.98
СВЕТОДИОД + Варистор (28..60)В DС/AC	99.02.0.060.98
СВЕТОДИОД + Варистор (110...240)В DC/AC	99.02.0.230.98
RC-цепь (6..24)В DC/AC	99.02.0.024.09
RC-цепь (28..60)В DC/AC	99.02.0.060.09
RC-цепь (110...240)В DC/AC	99.02.0.230.09
Байпас начального тока (110...240)B AC	99.02.8.230.07

95 Серия - Розетки и аксессуары для реле 44 Серии
060.72

8-полюсная перемычка для розеток серии 95.85 .3	095.08 (синий)	095.08 .0 (черный)
Номинальные значения	$10 \mathrm{~A}-250 \mathrm{~V}$	

Розетка с винтовым зажимом для установки на поверхность или на 35мм рейку	95.85 .3 (синий)	95.85 .30 (черный)
Тип реле	44.52, 44.62	
Аксессуары		
Металлическая клипса	095.71	
Пластмассовый удерживающий зажим (поставляется с розеткой - код корпуса SPA)	095.91 .3	095.91 .30
8-полюсная перемычка	095.08	095.08.0
Маркировочная этикетка	095.80 .3	
Модули (см. таблицу ниже)	99.80	
Список маркировочных этикеток для пластмассовых клипс 095.91.3, 72 этикетки, 6×12 мм	060.72	
Технические параметры		
Номинальные значения	10 A-250 B	
Изоляция	6 кВт (1.2/50 мкс) между катушкой и контактами	
Категория защиты	IP 20	
Температура окружающего воздуха ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	
(98) Момент завинчивания Нм	0.5	
Длина зачистки провода мm	7	
Макс. размер провода для розеток 95.85.3	одножильный провод	многожильный провод
MM ${ }^{2}$	1x6 / 2x2.5	1x4/2x2.5
AWG	1x10 / 2x14	1x12 / 2x14

$$
4
$$

Сертификация (В соответствии с типом):

* Модули в черном корпусе поставляются по заказу.

Зеленый светодиод стандартная комплектация.
Красный светодиод -

маркировка катушки 99.80, модули подавления электромагнитного импульса для розеток 95.85.3

	Голубой*
диод (+A1, стандартная полярность) (6...220)B DC	99.80.3.000.00
СВЕТОДИОД (6...24)В DC/AC	99.80.0.024.59
СВЕТОДИОД (28...60)В DC/AC	99.80.0.060.59
СВЕТОДИОД (110...240)В DC/AC	99.80.0.230.59
СВЕТОДИОД + диод (+A1, стандартная полярность) (6...24)В DC	99.80.9.024.99
СВЕТОДИОД + диод (+А1, стандартная полярность) (28...60)В DC	99.80.9.060.99
СВЕТОДИОД + диод (+A1, стандартная полярность) (110...220)В DC	99.80.9.220.99
СВЕТОДИОД + Варистор (6...24)В DC/AC	99.80.0.024.98
СВЕТОДИОД + Варистор (28...60)В DC/AC	99.80.0.060.98
СВЕТОДИОД + Варистор (110...240)В DC/AC	99.80.0.230.98
RC-цепь (6...24)B DC/AC	99.80.0.024.09
RC-цепь (28...60)B DC/AC	99.80.0.060.09
RC-цепь (110...240)B DC/AC	99.80.0.230.09
Байпас начального тока (110..240)B AC	99.80.8.230.07

поставляется по заказу.

Сертификация (В соответствии с типом):

060.72

Розетка с винтовым зажимом для установки на поверхность или на 35 мм рейку	95.95 .3 (синий)	95.95 .30 (черный)
Тип реле	44.52, 44.62	
Аксессуары		
Металлическая клипса	095.71	
Пластмассовый удерживающий зажим (поставлнется с розеткой - код корпуса SPA)	095.91 .3	095.91 .30
8-полюсная перемычка	095.08	095.08 .0
Маркировочная этикетка	095.80 .3	
Модули (см. таблицу ниже)	99.80	
Список маркировочных этикеток для пластмассовых клипс 095.91.3, 72 этикетки, 6×12 мм	060.72	
Технические параметры		
Номинальные значения	10 A-250 B	
Изоляция	6 кВт (1.2/50 мкс) между катушкой и контактами	
Категория защиты	IP 20	
Температура окружающего воздуха ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	
(49) Момент завинчивания HM	0.5	
Длина зачистки провода мм	8	
Макс. размер провода для розеток 95.95.3	одножильный провод	многожильный провод
$M_{M}{ }^{2}$	1x6 / 2x2.5	1x4 / 2x2.5
AWG	1x10 / 2x14	1x12 / 2x14

8-полюсная перемычка для розеток серии 95.95.3	095.08 (синий)	095.08 .0 (черный)
Номинальные значения	$10 \mathrm{~A}-250 \mathrm{~B}$	

Сертификация (В соответствии с типом):

PG

* Модули в черном корпусе поставляются по заказу.

Зеленый светодиод стандартная комплектация. Красный светодиод -

маркировка катушки 99.80, модули подавления электромагнитного импульса для розеток 95.95 .3 Голубой*

диод (+А1, стандартная полярность) (6...220)B DC	99.80.3.000.00
СВЕТОДИОД (6..24)В DC/AC	99.80.0.024.59
СВЕТОДИОД (28..60)В DC/AC	99.80.0.060.59
СВЕТОДИОД (110...240)В DC/AC	99.80.0.230.59
СВЕТОДИОД + диод (+А1, стандартная полярность) (6...24)В DC	99.80.9.024.99
СВЕТОДИОД + диод (+А1, стандартная полярность) (28...60)В DC	99.80.9.060.99
СВЕТОДИОД + диод (+A1, стандартная полярность) (110...220)В DC	99.80.9.220.99
СВЕТОДИОД + Варистор (6..24)В DC/AC	99.80.0.024.98
СВЕТОДИОД + Варистор (28...60)В DC/AC	99.80.0.060.98
СВЕТОДИОД + Варистор (110...240)B DC/AC	99.80.0.230.98
RС-цепь (6..24)В DC/AC	99.80.0.024.09
RC-цепь (28..60)В DC/AC	99.80.0.060.09
RC-цепь (110...240)В DC/AC	99.80.0.230.09
Байпас начального тока (110...240)B AG	99.80.8.230.07

Модульные таймеры 86 серии
(12...24)B AC/DC; Монофункциональный: AI, DI; (0.05с...100мин.) 86.30.0.024.0000

Сертификация

(В соответствии с типом): $\mathbf{C} \in$ PG $c \mathbf{N}_{\text {US }}$

Сертификация (В соответствии с типом)

диод (+А1, стандартная полярность) (6...220)B DC	99.02.3.000.00
СВЕТОДИОД (6..24)В DC/AC	99.02.0.024.59
СВЕТОДИОД (28..60)В DC/AC	99.02.0.060.59
СВЕТОДИОД (110...240)В DC/AC	99.02.0.230.59
СВЕТОДИОД + диод (+A1, стандартная полярность) (6...24)В DC	99.02.9.024.99
СВЕТОДИОД + диод (+А1, стандартная полярность) (28...60)В DC	99.02.9.060.99
СВЕТОДИОД + диод (+А1, стандартная полярность)(110...220)В DC	99.02.9.220.99
СВЕТОДИОД + Варистор (6..24)В DC/AC	99.02.0.024.98
СВЕТОДИОД + Варистор (28..60)В DC/AC	99.02.0.060.98
СВЕТОДИОД + Варистор (110...240)В DC/AC	99.02.0.230.98
RC-цепь (6...24)В DC/AC	99.02.0.024.09
RC-цепь (28..60)В DC/AC	99.02.0.060.09
RC-цепь (110...240)B DC/AC	99.02.0.230.09
Байпас начального тока (110...240)B AC	99.02.8.230.07

95 Серия - Розетки и аксессуары для реле 44 Серии

	маркировка катушки 99.80, модули подавления электромагнитного импульса для розеток 95.55.3	
		Голубой*
	диод (+A1, стандартная полярность) (6..220)B DC	99.80.3.000.00
	СВЕТОДИОД (6...24)В DC/AC	99.80.0.024.59
99.80	СВЕТОДИОД (28...60)В DC/AC	99.80.0.060.59
Сертификация	СВЕТОДИОД (110..240)В DC/AC	99.80.0.230.59
(В соответствии с типом):	СВЕТОДИОД + диод (+А1, стандартная полярность) (6...24)В DC	99.80.9.024.99
PG	СВЕТОДИОД + диод (+А1, стандартная полярность) (28...60)В DC	99.80.9.060.99
	СВЕТОДИОД + диод (+А1, стандартная полярность)(110...220)В DC	99.80.9.220.99
	СВЕТОДИОД + Варистор (6..24)В DC/AC	99.80.0.024.98
* Модули в черном корпусе поставляются по заказу.	СВЕТОДИОД + Варистор (28..60)В DC/AC	99.80.0.060.98
	СВЕТОДИОД + Варистор (110..240)В DC/AC	99.80.0.230.98
	RC-цепь (6...24)B DC/AC	99.80.0.024.09
Зеленый светодиод стандартная комплектация	RC-цепь (28..60)В DC/AC	99.80.0.060.09
	RC-цепь (110..240)B DC/AC	99.80.0.230.09
Красный светодиод поставляется по заказу.	Байпас начального тока (110...240)В AC	99.80.8.230.07

	Розетка с винтовым зажимом для установки на поверхность или на 35мм рейку	95.65 (синий)	
	Тип реле	44.52, 44.62	
95.65	Аксессуары		
	Металлическая клипса	095.71	
Сертификация	8-полюсная перемычка	095.08	
	Модули (см. таблицу ниже)	-	
CE (6) $\mathrm{Cl}^{\text {US }}$	Технические параметры		
	Номинальные значения	$10 \mathrm{~A}-250 \mathrm{~B}$ *	
	Изоляция (между катушкой и контактами)	2 kBt AC	
	Категория защиты	IP 20	
	Температура окружающего воздуха ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	
	(72) Момент завинчивания Нм	0.5	
	Длина зачистки провода мм	7	
	Макс. размер провода для розеток 95.65	одножильный провод	многожильный провод
	m^{2}	1x6 / 2x2.5	1x4/2x2.5
	AWG	1x10 / 2x14	1x12 / 2x14

* При токе > 10 А необходимо подключить разъем с контактами в параллель (21 с 11 , 24 с 14, 22 с 12). Для реле 40.51 перекидной контакт: 21-12-14.

8-полюсная перемычка для розеток серии 95.65
Номинальные значения

рев розетка с удерживающим зажимом	95.15 .2 (синий)	95.15 .20 (черный)
Тип реле	$44.52,44.62$	
Аксессуары		095.51
Металлинескаяклипса(поставляетсяс розеткой-код корпуса SMA)		095.52
Пластмассовый удерживающий зажим		
Технические параметры	$10 \mathrm{~A}-250 \mathrm{~B}$	
Номинальные значе ния	6 кВт $(1.2 / 50$ мкс) между катушкой и контактами	
Изоляция	IP 20	
Категорин защиты	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Температура окружающего воздуха		

Коды на упаковке

Кодировка зажимов и упаковки розеток.

Варианты кодировки обозначаются тремя последними буквами:

Характеристики

Реле печатного монтажа для применения при температуре окр.среды до $+10{ }^{\circ} \mathrm{C}$ - подключение катушки и клемм контактов - на плате
45.31, 1 НО-контакт (зазор ≥ 3 мм)

Реле печатного монтажа для применения при температуре окр.среды до $+125^{\circ} \mathrm{C}$ - подключение катушки - Наконечник Faston 250
45.71, 1 НО или 1 Н3 контакт

- 45.91, 1 НО-контакт (зазор ≥ 3 мм)

Зазор ≥ 3 мм согласно EN 60730-1 (тип 45.31 иги 45.91)
Катушка: чувств. версия для DC -360 mW Доступна бескадмиевая версия Усиленная изоляция между катушкой и контактами согласно нормам EN 60335-1 (VDE 0700), с безопасной изоляцией и зазором 8 мм
изолнция 6 кВт (1.2/50 $\mu \mathrm{s}$) обмотка контакты
Уровень защиты: стандарт RT II, (опция RT III)

См. чертеж на стр. 3
По клАсСИФИкации UL, МощНость в л.с.и НомИНАЛ КОНТАКТОв в дЕЖУРНОМ РЕЖИМЕ, см.
"ОсновНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток A

Ном. напряжение/Макс. напряжение	B
Номинальная нагрузка $\mathrm{AC1}$	BA

Номинальная нагрузка(230 B~) AC15 BA

Дотустимая мощностьодноразнюого двигателя (230 B-) kBT
Отключающая способность DC1:30/110/220 BA

Минимальный ток переключения мВт(B/мA)
Стандартный материал контакта
Характеристики катушки
 ~

1NO (SPST-NO) ≥ 3 мм зазор - Макс допустимая температура окружающей среды $+105^{\circ} \mathrm{C}$ Длн печатного монтажа
45.71

1NO ити 1 NC (SPST-NO ипи SPST-NC) Макс допустимая температура окружающей среды $+125^{\circ} \mathrm{C}$ Для печатного монтажа + наконечник Faston 250

A1	14

45.71... 0310 (1 NO) / (SPST-NO)

45.71... 0410 (1 NC) / (SPST-NC)

45.91

1NO (SPST-NO) ≥ 3 мм зазор окружающей среды $+125^{\circ} \mathrm{C}$ Для печатного монтажа + наконечник Faston 250

Вид сбоку

1NO (SPST-NO) ≥ 3 мм зазор 1 NOиги 1NC (SPST-NO иги SPST-NC) 1 NO (SPST-NO) ≥ 3 мм зазор

$16 / 30$	$16 / 30$	$16 / 30$
$250 / 400$	$250 / 400$	$250 / 400$
4,000	4,000	4,000
750	750	750
0.55	0.55	0.55
$16 / 4 / 1$	$16 / 0.3 / 0.13$	$16 / 4 / 1$
$500(10 / 5)$	$500(10 / 5)$	$500(10 / 5)$

-	-	-
6-12-24-48-60	6-12-24-48-60	6-12-24-48-60
-/0.36	-/0.36	-/0.36
-	-	-
(0.7...1.2) U_{N}	(0.7...1.2) U_{N}	(0.7...1.2) U_{N}
$-/ 0.4 U_{N}$	$-/ 0.4 U_{N}$	$-/ 0.4 U_{N}$
$-/ 0.1 U_{N}$	$-/ 0.1 U_{N}$	$-/ 0.1 \mathrm{U}_{\mathrm{N}}$
$-/ 10 \cdot 10^{6}$	$-/ 10 \cdot 10^{6}$	$-/ 10 \cdot 10^{6}$
$30 \cdot 10^{3}$	$100 \cdot 10^{3}$	$30 \cdot 10^{3}$
12/2	10/2	12/2
6 (8 mm)	6 (8 mm)	6 (8 mm)
2,500	1,000	2,500
-40...+105	$-40 \ldots+125$	-40...+125
RT II	RT II	RT II
(1)		

Информация по заказам

Пример: 45-я серия миниатюрных реле для печатного монтажа + наконечник Faston 250, с 1 НО перекидным контактом (SPST-NO), катушка на номинальное напряжение 12 В DC.

Выбор характеристик и опций: возможны комбинации только в одном ряду.

Тип	Питание катушки	A	B	C	D
45.31	чувств. катушка DC	$0-2$	3	1	0
45.71	чувств. катушка DC	$0-1$	$3-4$	1	$0-1$
45.91	чувств. катушка DC	$0-2$	3	1	$0-1$

Технические параметры

Характеристика контактов

F 45 - Электрическая долговечность (АС) при ном. нагрузке тип 45.71

F 45 - Электрическая долговечность (АС) при ном. нагрузке тип 45.31 / 45.91

- При переключении активной нагрузки (DC1) значения напряжения и тока которой нахадятся в нижней части графика (под характеристикой), величина ожидаемого электрического ресурса для 45.71 составит $100 \cdot 10^{3}$ циклов, и $\geq 30 \cdot 10^{3}$ циклов для 45.31, 45.91.
- В случае нагрузок DC13, подключение диода параллельно нагрузке позволит получить такой же электрический ресурс, как и для нагрузки DG1.
Примечание: время отключения нагрузки возрастет.

R 45 - Отношение рабочего диапазона для DC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

тип 45.71 / 91

46 Серия - Миниатюрные промышленные реле 8-16 А

Характеристики

Серия реле с 1 и 2 группами контактов 46.52-2 группы контактов 8 A 46.61-1 группа контактов 16 А

Для установки на розетку или дпн прямого соединения через наконечник типа Faston обмотки AC и DC
Доступны в комплектации с: блокируемая кнопка проверки, механический индикатор и светодиодный индикатор 8 мм, изоляция 6 кВт (1.2/50 $\mu \mathrm{s}$) катушка-контакты

- Материал контактов - бескадмиевый Европейский патент

ПО КЛАССИФИКацИИ UL, МощНость в л.с.и НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток A

Ном. напряжение/Макс. напряжение	B~
Номинальная нагрузка AC1	BA

Номинальная нагрузка(230 B~) AC15 BA
Допустимая мощность однофазнюго двигателя (230 B) кBT

Отключающая способность DC1: 30/110/220 BA
Минимальный ток переключения мВт(B/мA)

Стандартный материал контакта
Характеристики катушки

* Для контактов AgSnO_{2} максимальный ток составляет 80 A-5 мс при нормально открытом контакте.

Информация по заказам

Пример: 46-я серия Миниатюрные промышленные реле, перекидной контакт (SPDT), катушка на номинальное напряжение 24 V DC, блокируемая кнопка проверки и механический индикатор.
Серия

Кол-во контактав
$1=1$ контакта, 16 А
2 = 2 контакта, 8 А
Тип катушки
9 = DC
$8=\mathrm{AC}(50 / 60$ Гц)

Напряжение катушки

См. характеристики катушки
Выбор характеристик и опций: возможны комбинации только в одном ряду. Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
	AC - DC	$\mathbf{0 - 5}$	$\mathbf{0}$	$\mathbf{2 - 4}$	$\mathbf{0}$
	AC	$0-5$	0	54	$/$
	DC	$0-5$	0	74	$/$
	AC - DC	$\mathbf{0 - 4 - 5}$	$\mathbf{0}$	$2-\mathbf{4}$	$\mathbf{0}$
	AC	$0-4-5$	0	54	$/$
	DC	$0-4-5$	0	74	$/$

Имеется специальная версия для железнодорожных приложений

Описание: Опции

Блокируемая кнопка проверки и механический указатель срабатывания

 (0040, 0054, 0074)Кнопку проверки двойного на значения Finder можно использовать двумя способами: Способ 1 Пла стиковый ключ (расположенный непосредственно под кнопкой проверкии остается на месте. В этом слу чае при нажатии кнопки проверки контакты срабатывают При отпускании кнопки проверки контакты возвращаются в исходное положение. Способ 2 Пластиковый ключ отламывается (с помощью соответствую щего инструмента). В этом случае (в дополнение к указа нн ому выше) при нажатии и повороте кнопки проверки контакты замыкаются в рабочем положении и остаются в таком состоя нии до поворота кнопки проверки обратно в исходное положение. В обоих случаях кнопку следует нажимать (поворачивать) быстро и четко.

46 Серия - Миниатюрные промышленные реле 8-16 А

Технические параметры

Изоляция в соответствии с EN 61810-1 ed				
	1 контакта		2 контакта	
Номинальное напряжение питания V AG	230/400		230/400	
Расчетное напряжение изоляции VAC	250	400	250	400
Уровень загрязнения	3	2	3	2
Изоляция между катушкой и контактной группой				
Тип изоляции	Усиленный (8 mm)		Усиленный (8 mm)	
Категория перегрузки	III		III	
Расчетное импульсное напряжение kV (1.2/50 мкс)	6		6	
Электрическая прочность V AC	4,000		4,000	
Изоляция между соседними контактами				
Тип изоляции	-		Базовый	
Категория перегрузки	-		III	
Расчетное импульсное напряжение kV (1.2/50 мкс)	-		4	
Электрическая прочность V AC	-		2,000	
Изоляция между разомкнутыми контактами				
Тип расцепления	Микро-расцепление		Микро-расцепление	
Электрическая прочность V AC/kV (1.2/50 мкс)	1,000/1.5		1,000/1.5	
Устойчивость к перепадам				
Разрыв (5...50)нс, 5 кГц, на А1-А2	EN 61000-4-4		уровень 4 (4 kV)	
Импульс (1.2/50 мкс) на А1-A2 (при дифференциальном включении)	EN 61000-4-5		уровень 3 (2 kV)	
Прочее	46.61		46.52	
Время дребезга: НО/НЗ мc	2/6		1/4	
Виброустойчивость (10..150) Hz : НО/H3 g	20/12		20/15	
Ударопрачность g	20		20	
Потери мощности без нагрузки Вт	0.6		0.6	
при номинальном токе Вт	1.6		2	
Рекомендуемое расстояние между реле но плате мм	≥ 5			

Характеристика контактов

F 46 - Электрическая долговечность (AC) при ном. нагрузке Тип 46.52

H 46 - Макс. отключающая способность DC1

F 46 - Электрическая долговечность (AC) при ном. нагрузке Тип 46.61

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1.
Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики катушки

Версия для DC

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Сопротивл.	Потребл. I при U_{N}
B		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max }$	R	
12	9.012	8.8	13.2	Ω	мA
24	9.024	17.5	26.4	1,200	40
48	9.048	35	52.8	4,800	10
110	9.110	80	121	23,500	4.7
125	9.125	91.2	138	32,000	3.9

R 46 - Отношение рабочего диапазона для DC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напрнжение удержания катушки при температуре окружающей среды.

Версия для AC

Номин.	Код	Рабочий диапазон		Сопротивл.	Потребл.
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	
B		B	B	Ω	MA
12	8.012	9.6	13.2	80	90
24	8.024	19.2	26.4	320	45
48	8.048	38.4	52.8	1,350	21
110	8.110	88	121	6,900	9.4
120	8.120	96	132	9,000	8.4
230	8.230	184	253	28,000	5
240	8.240	192	264	31,500	4.1

R 46 - Отношение рабочего диапазона для AC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Аксессуары

| Блок маркировок для реле типов 46.52 и 46.61 , пластик, 72 знака, 6×12 мм | 060.72 |
| :--- | :--- | :--- |

86.30.0.024.0000
86.30.8.120.0000
86.30.8.240.0000

Сертификация (В соответствии с типом)

Модульные таймеры 86 серии

(12...24)B AC/DC; Монофункциональный: AI, DI; (0.05c...100мин.)
(110...125)B AC; Монофункциональный: AI, DI; (0.05с...100мин.)
(230...240)B AC; Монофункциональный: AI, DI; (0.05с...100мин.)

Сертификация
(В соответствии с типом):CE PG c $)_{\text {US }}^{\text {(}}$
8-полюсный шинный соединитель для розеток серии 97.01 и 97.02
Номинальные значения

(В соответствии с типом): © PG ct-

Модульные таймеры 86 серии

(12..24)B AC/DC; Монофункциональный: AI, DI; (0.05с...100мин.)	86.30 .0 .024 .0000
(110...125)B AC; Монофункциональный: AI, DI; (0.05с..100мин.)	86.30 .8 .120 .0000
$(230 \ldots 240) \mathrm{B} \mathrm{AC} ;$ Монофункциональный: AI, DI; (0.05с...100мин.)	86.30 .8 .240 .0000

Сертификация

Сертификация (В соответствии с типом)
PG с~I US
Модули в черном
корпусе поставляются
по заказу.

маркировка катушки 99.02, модули подавления электромагнитного импульса для розеток 97.51 и 97.52

97 Серия - Розетки и аксессуары для реле 46 Серии

Коды на упаковке

Кодировка зажимов и упаковки розеток.

Варианты кодировки обозначаются тремя последними буквами:

50 Серия - Реле с принудительным управлением контактами 8А

Характеристики

Реле с 2 перекидными контактами для монтажа напрямую на печатную плату С принудительным управлением контактами (EN 50205 тип B) *

- Высокий уровень физического разделения между соседними контактами
- Материал контактов - бескадмиевый
. 8 мм, изоляция 6 кВт (1.2/50 $\mu \mathrm{s}$) катушка - контакты
Уровень защиты: RT III

* Согласно EN 50205 только 1 NO и 1 NC (11-14 и 21-22 или 11-12 и 21-24) могут использоваться как контакты с принудительным переключением
ПО КЛАССИФИКАЦИИ UL, МощНость в Л.С.и НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)

Номинальный ток/Макс. пиковый ток А	8/15	8/15
Ном. напряжение/Макс. напряжение В~	250/400	250/400
Номинальная нагрузка AC1 BA	2,000	2,000
Номинальная нагрузка(230 B~) AC15 BA	500	500
Дотустимая мощностьодносазного двигателя (230 B-) кBт	0.37	0.37
Отключающая способность DC1: 30/110/220 BA	8/0.65/0.2	8/0.65/0.2
Минимельный ток переключения мВт(B/мA)	500 (10/10)	50 (5/5)
Стандартный материал контакта	AgNi	$\mathrm{AgNi}+\mathrm{Au}$
Характеристики катушки		
Номин. напряж. (U_{N}) V AC (50/60 Гц)	-	-
V DC	5-6-12-24-48-60-110-125	5-6-12-24-48-60-110-125
Ном. мощн. AC/DC BA (50 Гц)/Вт	-/0.7	-/0.7
Рабочий диапазон AC (50 Гц)	-	-
DC	(0.75 ..1.2) U_{N}	(0.75...1.2) U_{N}
Напряжение удержания AC/DC	$-/ 0.4 U_{N}$	$-/ 0.4 U_{N}$
Напряжение отключения AC/DC	$-/ 0.1 U_{N}$	$-/ 0.1 U_{N}$
Технические параметры		
Механическая долговечность AC/DC циклов	-/10 $\cdot 10^{6}$	$-/ 10 \cdot 10^{6}$
Электр. договечность при ном. нагрузке АС1 циклов	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Время вкл/выкл мс	10/4	10/4
Изоляция между катушкой и контактами (1.2/50 s) kB	6 (8 mm)	6 (8 mm)
Электрлесканпронностьмеждуотрьтьмиконтактами VAC	1,500	1,500
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	$-40 \ldots+70$
Категория защиты	RT II	RT II
Сертификация (в соответствии с типом)	(1) $\Delta c^{-1} \square_{\text {US }}$	

50.12... 1000

Для переключений в дежурном режиме, рассчитаны на нагрузку DC . 2 группы контактов, 8 А Выводы с шагом 5 мм Для печатного монтажа
50.12... 5000

Для приложений безопасностия Контакты с золотым покрытием $5 \mu \mathrm{~m}$ для переключения низкоуровневых сигналов Выводы с шагом 5 мм Для печатного монтажа

Вид сбоку

Вид сбоку | 2 перекидных контакта (DPDT) | 2 перекидных контакта (DPDT) |
| :---: | :---: |
| $8 / 15$ | $8 / 15$ |

50 Серия - Реле с принудительным управлением контактами 8A

Информация по заказам

Пример: 50-ая серия реле блокировки с 2 перекидными контактами (DPDT) 8 A, катушка на номинальное напряжение 24 B DC.

Кол-во контактов
$2=2$ контакта 8 А
Тип катушки
9 = DC
Напряжение катушки
См. характеристики катушки

Выбор характеристик и опций: возможны комбинации только в одном ряду. Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	A	B	C	D
50.12	DC	$\mathbf{1 - 5}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

Технические параметры

Изоляция в соответствии с EN 61810-1 ed

Номинальное напряжение питания VAC	230/400	
Расчетное напряжение изоляции V AC	250	400
Уровень загрязнения	3	2
Изоляция между катушкой и контактной группой		
Тип изоляции	Усиленный (8 mm)	
Категория перегрузки	III	
Расчетное импульсное напряжение kV (1.2/50 $\mu \mathrm{s}$)	6	
Электрическая прочность VAG	4,000	
Изоляция между соседними контактами		
Тип изоляции	Базовый	
Категория перегрузки	III	
Расчетное импульсное напряжение $\mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$	4	
Электрическая прочность VAC	2,500	
Изоляция между разомкнутыми контактами		
Тип расцепления	Микро-расцепление	
Электрическая прочность V AC/kV $(1.2 / 50 \mu \mathrm{~s})$	1,500/2.5	
Устойчивость к перепадам		
Разрыв (5..50) нс, 5 кГц, на А1-А2	EN 61000-4-4	уровень 4 (4 kV)
Импульс (1.2/50 мкс) на А1-A2 (при диффференциальном включении)	EN 61000-4-5	уровень 3 (2 kV)
Прочее		
Время дребезга: НО/Н3 мc	2/10	
Виброустойчивость (10...200Гц) : НО/Н3 g	20/6	
Ударопрачность НО/Н3 g	20/5	
Потери мощности без нагрузки Вт	0.7	
при номинальном токе Вт	1.2	
Рекомендуемое расстояние между реле но плате мм	≥ 5	

Характеристика контактов

F 50 - Электрическая долговечность (AC) при ном. нагрузке

Альтернативный выбор НО и НЗ контактов, предоставляемый принудительно управляемым (механически связанным) контактам в соответствии с EN 50205 (тип В).

H 50 - Макс. отключающая способность DC1

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1.
Примечание: Время срабатывания под нагрузкой можно будет увеличить.

R 50 - Отношение рабочего диапазона для DC к температуре окр. среды - Стандартная катушка

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

55 Серия - Миниатюрные универсальные реле 7-10 А

Характеристики

Для печатного монтажа, универсальные реле с 2, 3 и 4 группами контактов 55.12-2 перекидных контакта 10 A 55.13-3 перекидных контакта 10 A 55.14-4 перекидных контакта 7 А

катушки AC и DC
Контакты из бескадмиевого материала (предпочтительная версия)
Варианты материала контактов доступна защищенная версия (уровень защиты RT III) (влагонепроницаемые)

ПО КЛАССИФИКАЦИИ UL, МощНОСТь в Л.С.и НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение B~
Номинальная нагрузка(230 B~) AC15 BA
Дотустимая мощностьодноразнюго двигателя (230 B-) kBт
Отключающая способность $\mathrm{DC} 1: 30 / 110 / 220 \mathrm{BA}$
Минимальный ток переключения мВт(B/мA)
Стандартный материал контакта
Характеристики катушки
Номин. напряж. (U_{N}) V AC (50/60 Гц)

	V DC
Ном. мощн. $\mathrm{AC} / \mathrm{DC}$	$\mathrm{BA}(50$ Гц)/BT

Рабочий диапазон
Напряжение удержания \quad AC/DC
Напряжение отключения AC/DC
Технические параметры
Механическан долговечность AC/DC циклов

Электр. договечность при ном. нагрузке AC1 циклов

Время вкл/выкл мс

Изопяция между катушкой и контактами ($1.250 \mu \mathrm{~s}) \mathrm{kB}$
Эпектрмесканпрочюстьмеждуотрытьммконактам VAC
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$
Категория защиты
Сертификация (в соответствии с типом)
55.12

55.13

- 3 перекидных контакта 10 A Установка на печатную плату
55.14

4 перекидных контакта 7 А Установка на печатную плату

Характеристики

Реле для установки в розетку, универсальные
Реле с 2, 3 и 4 группами контактов 55.32-2 перекидных контакта 10 A 55.33-3 перекидных контакта 10 A 55.34-4 перекидных контакта 7 А

Блокируемая кнопка проверки и механический указатель срабатывания, стандартно дпя типов с 2 и 4 перекидными контактами
катушки AC и DC
По классификации UL (определенные комбинации реле/ розеток)
Контакты из бескадмиевого материала (предпочтительная версия)
Варианты материала контактов
Для использованин с розетками 94 серии модулями подавления электромагнитного импульса и таймерами 86 серия
Европейский патент

55.33

ПО КЛАССИФИКАЦИИ UL, МощНОСТь в Л.С.И НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОсНовНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток

Ном. напряжение/Макс. напряжение	$\mathrm{B} \sim$
Номинальная нагрузка AC 1	BA
Номинальная	

Допустимая мощность однофазного двигателя (230 B-) кВт
Отключающая способность DC1: 30/110/220 BA
Минимальный ток переключения мВт(B/MA)
Стандартный материал контакта
Характеристики катушки
Номин. напряж. (U_{N}) V VC (50/60 Гц)

V DC	6-12-24-48-60-110-125-220		
Ном. мощн. AC/DC $\quad \mathrm{BA}(50$ Гц)/Вт	1.5/1	1.5/1	1.5/1
Рабочий диапазон \quad AC	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
	(0.8...1.1) U_{N}	(0.8...1.1) U_{N}	(0.8...1.1) U_{N}
Напряжение удержания AC/DC	$0.8 \mathrm{U} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$
Напрнжение отключения AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Технические параметры			
Механическая долговечность AC/DC циклов	$20 \cdot 10^{6 / 50} \cdot 10^{6}$	$20 \cdot 10^{6} / 50 \cdot 10^{6}$	$20 \cdot 10^{6} / 50 \cdot 10^{6}$
Электр. договечность при ном. нагрузке АС1 циклов	$200 \cdot 10^{3}$	$200 \cdot 10^{3}$	$150 \cdot 10^{3}$
Время вкл/выкл мс	10/5	10/5	11/3
Изоляция между катушкой и контактами $(1.2 / 50 \mu \mathrm{~s}) \mathrm{kB}$	4	4	4
Электрнеканпроннстьмеждуоткрьпьмиконтактами VAC	1,000	1,000	1,000
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-40...+85	-40...+85	$-40 \ldots+85$
Категория защиты	RT I	RT I	RT I
Сертификация (в соответствии с типом)	ANCE © (D)		(S) $c \mathrm{~N}_{\text {us }}$

55.32 - 2 перекидных контакта 10 A - Розетки 94 серии с штепсельным разъемом	55.33 - 3 перекидных контакта 10 A - Розетки 94 серии с штепсельным разъемом	55.34 . 4 перекидных контакта 7 A - Розетки 94 серии с штепсельным разъемом
		1214222432344244 $\left.4\right\|_{4} ^{1} 5$
2 перекидных контакта (DPDT)	3 перекидных контакта (DPDT)	4 перекидных контакта (DPDT)
10/20	10/20	7/15
250/400	250/400	250/250
2,500	2,500	1,750
500	500	350
0.37	0.37	0.125
10/0.25/0.12	10/0.25/0.12	7/0.25/0.12
300 (5/5)	300 (5/5)	300 (5/5)
AgNi	AgNi	AgNi
6-12-24-48-60-110-120-230-240		
6-12-24-48-60-110-125-220		
1.5/1	1.5/1	1.5/1
$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	(0.8...1.1) U_{N}
(0.8...1.1) U_{N}	(0.8...1.1) U_{N}	(0.8...1.1) U_{N}
$0.8 \mathrm{U} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
$20 \cdot 10^{6} / 50 \cdot 10^{6}$	$20 \cdot 10^{6} / 50 \cdot 10^{6}$	$20 \cdot 10^{6} / 50 \cdot 10^{6}$
$200 \cdot 10^{3}$	$200 \cdot 10^{3}$	$150 \cdot 10^{3}$
10/5	10/5	11/3
4	4	4
1,000	1,000	1,000
$-40 \ldots+85$	$-40 \ldots+85$	$-40 \ldots+85$
RT I	RT I	RT I
	PG (1)	INA (S) c ${ }^{\text {d }}$

Информация по заказам

Пример: Реле $55-$-й серии для монтажа в розетку, 4 перекидных контакта (4PDT), катушка на номинальное напряжение 12 В DC, блокируемая кнопка проверки и механический индикатор.
Серия
Тип
1 = монтаж на печатную плату
3 = монтаж в розетку

Варианты
$=$ Стандартный
= Влагонепроницаемый (RT III) только для $55.12,55.13$ и 55.14

Кол-во контактов
$2=2$ контакта, 10 A
$3=3$ контакта, 10 А
$4=4$ контакта, 7 А
Тип катушки \qquad
$8=A C(50 / 60$ Гц)
9 = DC
Напряжение катушки
См. характеристики катушки

Выбор характеристик и опций: возможны комбинации только в одном ряду.
Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	A	B	C	D
55.32/34	AC-DC	0-2-5	0	0	0
	AC	0-2-5	0	2-3-4-5	0
	AC	0-2-5	0	54	1
	DC	0-2-5	0	2-4-6-7-8-9	0
	DC	0-2-5	0	74-94	1
55.33	AC-DC	0-2-5	0	0	0
	AC	0-2-5	0	1-3-5	0
	DC	0-2-5	0	1-6-7-8-9	0
55.12/13/14	AC-DC	0-2-5	0	0	0-1

С: Опции

$0=$ Нет
= Блокируемая кнопка проверки
= Механический индикатор
$=$ Светодиод (AC)
= Блокируемая кнопка проверки + механический индикатор
5 = Блокируемая кнопка проверки + светодиод (АС)
54 = Блокируемая кнопка проверки + светодиод (AC) + механический индикотор
$6^{*}=$ Двойной светодиод (неполяризованный DC)
7* = Блокируемая кнопка проверки + двойной СИД (неполяризованный DC)
74* = Блокируемая кнопка проверки + двойной СИД (неполяризованный DC) + механический индикатор

8* = Светодиод + диод (DC, полярность положительная для контакта A/A 13)
= Блокируемая кнопка проверки + Светодиод + диод (DC, полярность положительная для контакта A/A 13)
94* $=$ Блокируемая кнопка проверки + Светодиод + диод (DC, полярность положительная для контакта A/A 13) + механический индикатор

* Опция недоступна для версии 220 V DC.

Описание: опции и варианты

Блокируемая кнопка проверки и механический указатель срабатывания
(0010, 0040, 0050, 0054, 0070, 0074, 0090, 0094)
Кнопку проверки двойного на значения Finder можно использовать двумя способами: Способ 1 Пла стиковый ключ (расположенный непосредственно под кнопкой проверкиا остается на месте. В этом слу чае при нажатии кнопки проверки контакты срабатывают. При отпускании кнопки проверки контакты возвращаются в исходное положение.
Способ 2 Пластиковый ключ отламывается (с помощью соответствую щего инструмента). В этом случае (в дополнение к указа нн ому выше) при нажатии и повороте кнопки проверки контакты замыкаются в рабочем положении и остаются в таком состоя нии до поворота кнопки проверки обратно в исходное положение. В обоих случаях кнопку следует нажимать (поворачивать) быстро и четко.

Технические параметры

Изоляция в соответствии с EN 61810-1 ed	2 контакта-3 контакта 4		4 контакта
Номинальное напряжение питания V AC	230/400 230		230
Расчетное напряжение изоляции VAC	400 250		250
Уровень загрязнения	2 2		2
Изоляция между катушкой и контактной группой			
Тип изоляции	Базовый		Базовый
Категория перегрузки	III		III
Расчетное импульсное напряжение kV (1.2/50 мкс)	4		4
Электрическая прочность VAC	2,000		2,000
Изоляция между соседними контактами			
Тип изоляции	Базовый		Базовый
Категория перегрузки	III		II
Расчетное импульсное напряжение kV (1.2/50 мкс)	4		2.5
Электрическая прочность VAC	2,000		2,000
Изоляция между разомкнутыми контактами			
Тип расцепления	Микро-расцепление		Микро-расцепление
Электрическая прочность V AC/kV (1.2/50 мкс)	1,000/1.5		1,000/1.5
Устойчивость к перепадам			
Разрыв (5..50) нс, 5 кГц, на А1-А2	EN 61000-4-4		уровень 4 (4 kV)
Импульс (1.2/50 мкс) на А1-A2 (при дифференциальном включении)	EN 61000-4-5		уровень 4 (4 kV)
Прочее			
Время дребезга: $\mathrm{HO} / \mathrm{H} 3$ (mc	1/3		
Виброустойчивость (5...55) Hz: НО/H3 g	15/15		
Ударопрачность g	16		
Потери мощности без нагрузки Вт	1		
при номинальном токе Вт	3 (2 контакта)	4 (3 контакта)	3 (4 контакта)
Рекомендуемое расстонние между реле на плате мм	≥ 5		

Характеристика контактов

F 55- Электрическая долговечность (АС) при ном. нагрузке Реле с 2 и 3 лерекидными контактами

F 55-Электрическая долговечность (АС) при ном. нагрузке Реле с 4 перекидными контактами

H 55 - Макс. отключающая способность DC1

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1.
Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики катушки

Версия дла DC

Номин. напряж. U_{N}	Код катушки	Рабочий $\mathrm{U}_{\text {min }}$	апазон $\mathrm{U}_{\max }$	Сопротивл. R	Потребл. I при U_{N}
B		B	B	Ω	MA
6	9.006	4.8	6.6	40	150
12	9.012	9.6	13.2	140	86
24	9.024	19.2	26.4	600	40
48	9.048	38.4	52.8	2,400	20
60	9.060	48	66	4,000	15
110	9.110	88	121	12,500	8.8
125	9.125	100	138	17,300	7.2
220	9.220	176	242	54,000	4

R 55 - Отношение рабочего диапазона для DC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Версия для АС

Номин. напряж. U_{N} V	Код катушки	Рабочий диапазон		Сопротивл. R	Потребл. способность $\mathrm{I}^{\text {пои }} \mathrm{U}_{\mathrm{N}}(5 \mathrm{FO}-\mathrm{zz})$
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
		V	V	Ω	mA
6	8.006	4.8	6.6	12	200
12	8.012	9.6	13.2	50	97
24	8.024	19.2	26.4	190	53
48	8.048	38.4	52.8	770	25
60	8.060	48	66	1,200	21
110	8.110	88	121	4,000	12.5
120	8.120	96	132	4,700	12
230	8.230	184	253	17,000	6
240	8.240	192	264	19,100	5.3

R 55 - Отношение рабочего диапазона для AC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Аксессуары

056.25

056.26

056.25

фланцевый адаптер крепления для реле $55.32,55.33,55.34$
056.26

Адаптер крепления на $\mathbf{3 5}$ мм рейку (EN 60715) для реле $55.32,55.33,55.34 \mid 056.27$

056.27 с реле

Установка \quad Аксессуары

Панель или 35 -мм
рейка (EN 60715) модули подавления

Маркировка катушки и электромагнитного импульса Перемычка
-Модульные таймеры

- Пластмассовый

удерживающий зажим

См. стр. 8

См. стр. 9

Установка	Аксессуары
Панель или 35-мм	- Маркировка катушки и
рейка (EN 60715)	модули подавления
	электромагнитного импульса -Перемычка -Пластмассовый удерживающий зажим

Установка \quad Аксессуары
Панель или 35-мм -Маркировка катушки и рейка (EN 60715)

модули подавления
электромагнитного импульса
Металлич. зажимная клипса

Модель	Розетка	Реле	Описание	Установка	Аксессуары
99.80	94.54 .1	55.32	Розетка с пружиным зажимом -Длябыстрого подключения кабеля -Верхние клеммы - Контакты -Нижние клеммы - катушка	Панель или 35-мм рейка (ЕN 60715)	- Маркировка катушки и модули подавления электромагнитного импульса
		55.34		-Пластмассовый удерживающий зажим	

См. стр. 9

Модель	Розетка	Реле	Описание	
99.01	94.82	55.32	Розетка с винтовым зажимом -Ширина 23 мм длн экономии места	

Модель	Розетка	Реле	Описание
99.80	94.92 .3	55.32	Розетка с винтовым зажимом
	94.94 .3	55.32	-Верхние клеммы - Контакты
		55.34	-Нижние клеммы - катушка

Модель	Розетка	Реле	Описание
99.80	94.84 .2	55.32	Розетка с винтовым зажимом
		55.34	
	94.82 .3	55.32	
	94.84 .3	55.32	
		55.34	

См. стр. 10

(

См. стр. 11

94.14

См. стр. 12

Модель	Розетка	Реле	О
-	$\mathbf{9 4 . 1 2}$	55.32	Р
-	94.13	55.33	
-	$\mathbf{9 4 . 1 4}$	55.32	
		55.34	

Описание

 РСВ розетка| Установка | Аксессуары |
| :--- | :--- |
| Панель или 35-мм | - Маркировка катушки и |
| рейка (EN 60715) | модули подавления |
| | электромагнитного импульса |
| | - Перемычка |
| | -Пластмассовый |
| | удерживающий зажим |
| | |

94.22

См. стр. 12

Модель	Розетка	Реле
-	94.22	55.32
-	94.23	55.33
-	94.24	55.32
		55.34

Описание	Установка	Аксессуары
	Розетка для крепления на	Панель 1 мм
		-Металлич. зажимная клипса

Модель	Розетка	Реле
-	94.32	55.32
-	94.33	55.33
-	94.34	55.32
		55.34

Описание	Установка	Аксессуары
Розетка для крепления на панель под пайку	МЗ винтовой зажим	-Металлич. зажимная клипса

94 Серия - Розетки и аксессуары для реле 55 Серии

Розетка с винтовым зажимом для установки на поверхность или на 35мм рейку	94.02 синий	$94.02 .0$ черный	94.03 синий	$94.03 .0$ черный	94.04 синий	$94.04 .0$ черный
Тип реле	55.32		55.33		55.32, 55.34	

Аксессуары

Металлический удерживающий зажим	
Пластиковый удерживающий зажим	094

: (поставляется с розеткой - код корпуса SPA)

| 6 -полюсноя перемычка | 094.06 | 094.06 .0 | 094.0 |
| :--- | :--- | :--- | :--- | :--- |
| Маркировочная этикетка | | | |

Модули (см. таблицу ниже)	99.02
Модульные таймеры (см. таблицу ниже)	86.30
Блок маркировок для	

Блок маркировок для пластиковых удерживающих
зажимов 094.91.3, 72 знака, 6×12 мм
Технические параметры
Номинальные значения
$10 \mathrm{~A}-250 \mathrm{~V}$

Электрическая прочность	2 kV AC
Категория защиты	IP 20

| Температура окружающего воздуха ${ }^{\circ} \mathrm{C}$ | $-40 \ldots+70$ |
| :--- | :--- | :--- |

(45) Момент завинчивания	Нм
Длина зачистки провода	мм

Макс. размер провода для розеток 94.02/03/04
8

	одножильный провод	многожильный провод
мм 2	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

6-полюсный шинный соединитель для розеток серии $94.02,94.03$ и 94.04
Номинальные значения
094.06 (синий) $\quad 094.06 .0$ (черный)

Модульные таймеры 86 серии

(12...24)B AC/DC; Монофункциональный: AI, DI; (0.05с...100мин.)
(110...125)В AC; Монофункциональный: AI, DI; (0.05с...100мин.)
(230...240)B AC; Монофункциональный: AI, DI; (0.05с...100мин.)
86.30.0.024.0000
86.30.8.120.0000
86.30.8.240.0000
Сертификация
(В соответствии с типом): CE PG c $\mathbf{T I}_{\text {US }}^{\ominus}$

Сертификация (В соответствии с типом):

PG cisu US

Модули в черном корпусе поставляются по заказу.

маркировка катушки 99.02, модули подавления электромагнитного импульса для розеток 94.02, 94.03 и 94.04	
диод (+А1, стандартная полярность) (6..220)В DC	99.02.3.000.00
СВЕТОДИОД (6...24)В DC/AC	99.02.0.024.59
СВЕТОДИОД (28..60)В DC/AC	99.02.0.060.59
СВЕТОДИОД (110...240)В DC/AC	99.02.0.230.59
СВЕТОДИОД + диод (+A1, стандартная полярность) (6...24)В DC	99.02.9.024.99
СВЕТОДИОД + диод (+А1, стандартная полярность) (28..60)В DC	99.02.9.060.99
СВЕТОДИОД + диод (+А1, стандартная полярность) (110...220)В DG	99.02.9.220.99
СВЕТОДИОД + Варистор (6...24)В DC/AC	99.02.0.024.98
СВЕТОДИОД + Варистор (28..60)В DC/AC	99.02.0.060.98
СВЕТОДИОД + Варистор (110...240)В DC/AC	99.02.0.230.98
RC-цепь (6...24)В DC/AC	99.02.0.024.09
RC-цепь (28..60)В DC/AC	99.02.0.060.09
RC-цепь (110..240)В DC/AC	99.02.0.230.09
Байпас начального тока (110...240)B AC	99.02.8.230.07

Сертификация
(В соответствии с типом):

* Модули в черном корпусе поставляются по заказу.

Зеленый светодиод стандартная комплектация.
Красный светодиод поставляется по заказу.

		Голубой*
диод (+А1, стандартная полярность)	(6...220)B DC	99.80.3.000.00
СВЕТОДИОД	(6...24)B DC/AC	99.80.0.024.59
СВЕТОДИОД	(28...60)B DC/AC	99.80.0.060.59
СВЕТОДИОД	(110...240)B DC/AC	99.80.0.230.59
СВЕТОДИОД + диод (+А1, стандартная полярность)	(6...24)B DC	99.80.9.024.99
СВЕТОДИОД + диод (+А1, стандартная полярность)	(28...60)B DC	99.80.9.060.99
СВЕТОДИОД + диод (+А1, стандартная полярность)	(110...220)B DC	99.80.9.220.99
СВЕТОДИОД + Варистор	(6...24)B DC/AC	99.80.0.024.98
СВЕТОДИОД + Варистор	(28...60) B DG/AG	99.80.0.060.98
СВЕТОДИОД + Варистор	(110...240)B DC/AC	99.80.0.230.98
RC-цепь	(6...24)B DC/AC	99.80.0.024.09
RC-цепь	(28...60)B DC/AC	99.80.0.060.09
RC-цепь	(110...240)B DC/AC	99.80.0.230.09
Байпас начального тока	(110...240)B AC	99.80.8.230.07

94 Серия - Розетки и аксессуары для реле 55 Серии

94 Серия - Розетки и аксессуары для реле 55 Серии

6-полюсная перемычка для розеток серии 94.84.2, 94.82.3,
94.84.3, 94.92 .3 и 94.94 .3

Номинальные значения
094.06 (синий) $\quad 094.06 .0$ (черный)
$10 \mathrm{~A}-250 \mathrm{~V}$

Сертификация (В соответствии с типом)

P

* Модули в черном корпусе поставляются по заказу.

Зеленый светодиод -
стандартная комплектация. Кроеный светодиод поставляется по заказу.

маркировка катушки 99.80, модули подавления электромагнитного импульса для розеток 94.84.2, 94.82.3, 94.84.3, 94.92.3 и 94.94 .3

		Голубой*
диод (+А1, стандартная полярность)	(6...220)B DC	99.80.3.000.00
СВЕТОДИОД	(6...24)B DC/AC	99.80.0.024.59
СВЕТОДИОД	(28...60)B DC/AC	99.80.0.060.59
СВЕТОДИОД	(110...240)B DC/AC	99.80.0.230.59
СВЕТОДИОД + диод (+А1, стандартная полярность)	(6...24)B DC	99.80.9.024.99
СВЕТОДИОД + диод (+А1, стандартная полярность)	(28...60)B DC	99.80.9.060.99
СВЕТОДИОД + диод (+А1, стандартная полярность)	(110...220)B DC	99.80.9.220.99
СВЕТОДИОД + Варистор	(6...24)B DC/AC	99.80.0.024.98
СВЕТОДИОД + Варистор	(28...60)B DC/AC	99.80.0.060.98
СВЕТОДИОД + Варистор	(110...240)B DC/AC	99.80.0.230.98
RC-цепь	(6...24)B DC/AC	99.80.0.024.09
RC-цепь	(28...60)B DC/AC	99.80.0.060.09
RC-цепь	(110...240)B DC/AC	99.80.0.230.09
Байпас начального тока	(110...240)B AC	99.80.8.230.07

94 Серия - Розетки и аксессуары для реле 55 Серии

Коды на упаковке

Кодировка зажимов и упаковки розеток.
Варианты кодировки обозначаются тремя последними буквами:

Характеристики

Силовое реле 12 A, 2 и 4 группы контактов
Опция с фланцевым разъемом (Клемма Faston 187, 4.8×0.5 мм) катушки AC и DC
Блокируемая кнопка проверки и механический указатель срабатывания - стандарт для типов с 2 перекидными контактами Контакты из бескадмиевого материала (предпочтительная версия)
Варианты материала контактов Для использования с розетками 96 серии модулями подавления электромагнитного импульса и таймерами 86 серия
Европейский патент

* Только для 4 перекидных контактов (4PDT)

ПО КЛассИФИКации UL, Мощность в л.с.и НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение
Номинальная нагрузка AC1
Номинальнан нагрузка(230 B~) AC15
Догустиман мощностьодносазного двигатела (230 B~) кВт
Отключающая способность DC1: 30/110/220 BA
Минимальный ток переключения мВт(B/мA)
Стандартный материал контакта
Характеристики катушки
Номин. напряж. (U_{N})
V AC (50/60 Гц)

Ном. мощн. AC/DC $\quad \mathrm{BA}(50$ Гц)/Bт
Рабочий диапазон AC
Напряжение удержания AC/DC
Напряжение отключения
Технические параметры
Механическая долговечность AC/DC циклов
Электр. договечность при ном. нагрузке AC1 циклов
Время вкл/выкл
Изоляция между катушкой и контактами (1.250 $\mu \mathrm{s}$) kB
Эгектрпескадпрочистьмеждуотфопьммкопактам VAC
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$
Категория защиты
Сертификация (в соответствии с типом)
56.32/56.34

. 2 или 3 перекидных контакта
Установка в розетку /Faston 187
56.32-0300/56.34-0300

2 и 3 нормально открытых контакта (зазор ≥ 1.5 мм) Установка в розетку/Faston 187

56.32-0300
56.34-0300

2 перек. конт. (DPDT) 4 перек. конт. (4PDT) 2 NO (DPST-NO) $-\geq 1.5 \mathrm{~mm} \mid 4 \mathrm{NO}$ (4PST-NO) $-\geq 1.5 \mathrm{~mm}$

56.32

1214222432344244
 ${ }_{13}-{ }^{-14}$

56.34

Характеристики

Силовое реле для установки на печатную плату, 12 A

2 и 4 группы контактов катушки AC и DC
Контакты из бескадмиевого материала (предпочтительная версия)
Варианты материала контактов RT III (влагонепроницаемые) как опция

56.44

56.44-0300

* Только для 4 перекидных контактов (4РDT). ПО КЛАССИФИКАЦИИ UL, МощНОСТь в Л.с.и НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОсНОвНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток

Ном. напряжение/Макс. напряжение	B~
Номинальная нагрузка AC1	BA

Номинальная нагрузка(230 B~) AC15 BA
Догустимая мощностьодноразного двигателя (230 B~) кВт
Отключающая способность DC1: 30/110/220 BA
Минимальный ток переключения $\mathbf{~} \mathrm{Bt}(\mathrm{B} / \mathrm{MA})$
Стандартный материал контакта
Характеристики катушки
Номин. напряж. $\left(\mathrm{U}_{\mathrm{N}}\right) \quad V$ AC $(50 / 60$ Гц)

	V DC
Ном. мощн. AC/DC	BA $(50$ Гц)/Bт

Рабочий диапазон

Информация по заказам

Пример: 56-я серия съемных реле, 2 перекидных контакта (DPDT), катушка на номинальное напряжение 12 V DC, блокируемая кнопка проверки и механический индикатор.

См. характеристики катушки

Выбор характеристик и опций: возможны комбинации только в одном ряду. Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	A	B	C	D
56.32	AC	0-2-4	0	0-2-3-4-5	0
	AC	0-2-4	0	54	1
	AC	0-2-4	3	0-3-5	0
	DC	0-2-4	0	0-2-4-6-7-8-9	0
	DC	0-2-4	0	74-94	1
56.34	AC	0-2-4	0	0-2-3-4-5	0-6-8
	AC	0-2-4	0	54	1
	AC	0-2-4	0-3	0-3-5	0
	DC	0-2-4	0	0-2-4-6-7	0-6-8
	DC	0-2-4	0	74	1
56.42	DC	0-2-4	0	0	0-1
	AC	0-2-4	0-3	0	0-1
56.44	AC-DC	0-2-4	0	0	0-1
	AC	0-2-4	0-3	0	0-1

Имеется специальная версия для железнодорожных приложений

Описание: опции и варианты

Блокируемая кнопка проверки и механический указатель срабатывания (0040, 0050, 0054, 0070, 0074, 0090, 0094)
Кнопку проверки двойного на значения Finder можно использовать двумя способами: Способ 1 Пла стиковый ключ (расположенный непосредственно под кнопкой проверкии остается на месте. В этом слу чае при нажатии кнопки проверки контакты срабатывают. При отпускании кнопки проверки контакты возвращаются в исходное положение.
Способ 2 Пластиковый ключ отламывается (с помощью соответствую щего инструмента). В этом случае (в дополнение к указа нн ому выше) при нажатии и повороте кнопки проверки контакты замыкаются в рабочем положении и остаются в таком состоя нии до поворота кнопки проверки обратно в исходное положение. В обоих случаях кнопку следует нажимать (поворачивать) быстро и четко.

Технические параметры

* Только для приложений, в которых допускается перенапряжение категории II. Для приложений с перенапряжением категории III: Микро-расцепление.

Характеристика контактов

F 56 - Электрическая долговечность (AC) при ном. нагрузке
2-4 полюсные реле

H 56 - Макс. отключающая способность DC1 Версия с перекидным контактом

H 56 - Макс. отключающая способность DC1
Версия с НО контактом

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1.

4 Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики катушки

Версия для DC, реле с 2 группам контактав

Номин. напряж. U_{N}	Код катушки	Рабочий $\mathrm{U}_{\min }$	$\begin{aligned} & \text { апазон } \\ & U_{\max } \end{aligned}$	Сопротивл. R	Потребл. I при U_{N}
B		B	B	Ω	MA
6	9.006	4.8	6.6	40	150
12	9.012	9.6	13.2	140	86
24	9.024	19.2	26.4	600	40
48	9.048	38.4	52.8	2,400	20
60	9.060	48	66	4,000	15
110	9.110	88	121	12,500	8.8
125	9.125	100	138	17,300	7.2
220	9.220	176	242	54,000	4

Версия для DC, реле с 4 группам контактов

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Сопротивл. R	Потребл. I при U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
B		B	B	Ω	MA
6	9.006	5.1	6.6	32.5	185
12	9.012	10.2	13.2	123	97
24	9.024	20.4	26.4	490	49
48	9.048	40.8	52.8	1,800	27
60	9.060	51	66	3,000	20
110	9.110	93.5	121	10,400	10.5
125	9.125	107	138	14,200	8.8
220	9.220	187	242	44,000	5

R 56 - Отношение рабочего диапазона для DC к температуре окр. среды - Реле с 2 перекидными контактами

R 56 - Отношение рабочего диапазона для DC к температуре окр. среды - Реле с 4 перекидными контактами

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Версия для АС, реле с 2 группам контактав

Номин.	Код	Рабочий диапазон		Сопротивл.	Потребл.
U_{N}		$\mathrm{U}_{\text {min }}{ }^{*}$	$U_{\max }$	R	$\mathrm{Iпph}_{\mathrm{N}}(50 \mathrm{~Hz})$
V		V	V	Ω	mA
6	8.006	4.8	6.6	12	200
12	8.012	9.6	13.2	50	97
24	8.024	19.2	26.4	190	53
48	8.048	38.4	52.8	770	25
60	8.060	48	66	1,200	21
110	8.110	88	121	3,940	12.5
120	8.120	96	132	4,700	12
230	8.230	184	253	17,000	6
240	8.240	192	264	19,100	5.3

* $\mathrm{U}_{\text {min }}=0.85 \mathrm{U}_{\mathrm{N}}$ для реле с HO контактом.

Версия для АС, реле с 4 перекидными или 4 HO контактами

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Сопротивл. R	Потребл. способность $\operatorname{IппиU~}_{N}(50-\mathrm{zz})$
		$\mathrm{U}_{\text {min }}{ }^{*}$	$\mathrm{U}_{\max }$		
V		V	V	Ω	mA
6	8.006	4.8	6.6	5.7	300
12	8.012	9.6	13.2	22	150
24	8.024	19.2	26.4	81	90
48	8.048	38.4	52.8	380	37
60	8.060	48	66	600	30
110	8.110	88	121	1,900	16.5
120	8.120	96	132	2,560	13.4
230	8.230	184	253	7,700	\bigcirc
240	8.240	192	264	10,000	7.5
400	8.400	320	440	26,000	4.9

* $U_{\text {min }}=0.85 U_{\mathrm{N}}$ для реле с HO контактом.

R 56 - Отношение рабочего диапазона для AC к температуре окр. среды - Реле с 2 перекидными контактами

R 56 - Отношение рабочего диапазона для АС к температуре окр. среды - Реле с 4 перекидными или 4 НО контактами

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Аксессуары

Список маркировочных этикеток для реле 56.34 , пластик, 72 этикетки , 6×12 мм

Розетка с винтовым зажимом для установки на
поверхность или на 35 мм рейку
Тип реле

): (п

C \in © © ${ }^{\circ}$
094.91.3

L 96 - Номинальный ток при темп.

6-полюсный шинный соединитель для розеток серии 96.02	094.06 (синий)	094.06 .0 (черный)
Номинальные значения	$10 \mathrm{~A}-250 \mathrm{~V}$	

Модульные таймеры 86 серии

Мультинапряжение: (12...240)V AC/DC;
$\frac{\text { Многофункциональные:: AI, DI, SW, BE, CE, DE, EE, FE; (0.05 s... } 100 \text { h })}{(12 . .24) \mathrm{B} \mathrm{AC/DC;} \mathrm{Монофункциональный:} \mathrm{AI,} \mathrm{DI;} \mathrm{(0.05с...100мин.)}}$
(110...125)B AC; Монофункциональный: AI, DI; (0.05с...100мин.)
6.00.0.240.0000
(230...240)B AC; Монофункциональный: AI, DI; (0.05с...100мин.)
86.30.8.120.0000
86.30.8.240.0000
Сертификация

маркировка обмотки 99.02, модули подавления электромагнитного импульса для розеток 96.02 и 96.04

диод (+A1, стандартная полярность) (6...220)B DC	99.02.3.000.00
СВЕТОДИОД (6...24)В DC/AC	99.02.0.024.59
СВЕТОДИОД (28...60)В DC/AC	99.02.0.060.59
СВЕТОДИОД (110...240)В DC/AC	99.02.0.230.59
СВЕТОДИОД + диод (+А1, стандартная полярность) (6...24)В DC	99.02.9.024.99
СВЕТОДИОД + диод (+А1, стандартная полярность) (28...60)В DC	99.02.9.060.99
СВЕТОДИОД + диод (+А1, стандартная полярность)(110...220)В DC	99.02.9.220.99
СВЕТОДИОД + Варистор (6...24)В DCIAC	99.02.0.024.98
СВЕТОДИОД + Варистор (28...60)В DC/AC	99.02.0.060.98
СВЕТОДИОД + Варистор (110...240)В DC/AC	99.02.0.230.98
RC-цепь (6...24)B DC/AC	99.02.0.024.09
RC-цепь (28...60)В DC/AG	99.02.0.060.09
RC-цепь (110...240)B DC/AC	99.02.0.230.09
Байпас начального тока (110..240)В AC	99.02.8.230.07

корпусе поставляются по зоказу.

Сертификация (В соответствии с типом):

Сертификация (В соответствии с типом):

* Модули в черном корпусе поставляются
по заказу.

Зеленый светодиод стандартная комплектация. Красный светодиод поставляется по заказу.

Маркировка обмотки 99.01, модули подавления электромагнитного импульса для розеток типов 96.72 и 96.74

		Голубой*
диод (+А1, стандартная полярность)	(6...220)B DC	99.01.3.000.00
диод (+А2, нестандартнан полнрность)	(6..220)B DC	99.01.2.000.00
СВЕТОДИОД	(6...24)B DC/AC	99.01.0.024.59
СВЕТОДИОД	(28...60)B DC/AC	99.01.0.060.59
СВЕТОДИОД	(110...240)B DC/AC	99.01.0.230.59
СВЕТОДИОД + диод (+А1, стандартная полярность)	(6...24)B DC	99.01.9.024.99
СВЕТОДИОД + диод (+А1, стандартная полярность)	(28...60)B DC	99.01.9.060.99
СВЕТОДИОД + диод (+А1, стандартная полярность)	(110...220)B DC	99.01.9.220.99
СВЕТОДИОД + диод (+А2, нестандартная полярность)	(6...24)B DC	99.01.9.024.79
СВЕТОДИОД + диод (+А2, нестандартнан полярность)	(28...60)B DC	99.01.9.060.79
СВЕТОДИОД + диод (+А2, нестандартная полярность)	(110...220)B DC	99.01.9.220.79
СВЕТОДИОД + Варистор	(6..24)B DC/AC	99.01.0.024.98
СВЕТОДИОД + Варистор	(28...60)B DC/AC	99.01.0.060.98
СВЕТОДИОД + Варистор	(110...240)B DC/AC	99.01.0.230.98
RC-цепь	(6...24)B DCIAC	99.01.0.024.09
RC-цепь	(28...60)B DCIAC	99.01.0.060.09
RC-цепь	(110...240)B DC/AC	99.01.0.230.09
Байпас начального тока	(110...240)B AC	99.01.8.230.07

96.	Розетка рев	96.12 синий	$96.12 .0$ черный	96.14 синий	$96.14 .0$ черный
	Тип реле	56.32		56.34	
	Аксессуары				
Сертификация (В соответствии с типом):	Металлиеская клипса (поставлғется с розеткой - код корпуса SMA)	094.51			
	Технические параметры				
(16) PG (H) CSy ${ }_{c} \boldsymbol{n}_{\text {us }}^{\ominus}$	Номинальные 3 начения	15A-250V			
	Электрическая прочность	2 kVAG			
	Категория защиты	IP 20			
	Температура окружаю щего воздуха ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$			

Коды на упаковке

Кодировка зажимов и упаковки розеток.
Варианты кодировки обозначаются тремя последними буквами:

60 Серия - Универсальные реле 6-10 А

Характеристики

Съемные

Универсальные Реле 10 А

- 2 и 3 перекидных контакта
- Контакты из бескадмиевого материала (предпочтительная версия)
катушки AC и DC
По классификации UL (определенные комбинации реле/ розеток)
Варианты материала контактов
- Блокируемая кнопка проверки с механическим указателем срабатывания (предпочтительная версия)
- Для использования с розетками 90 серии - модулями подавления электромагнитного
- импульса и таймерами 86 серия

Европейский патент

ПО КЛАССИФИКАЦИИ UL, МощНость в Л.С.и НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)

Стандартный материал контакта
Характеристики катушки

Категория защиты
Сертификация (в соответствии с типом)

AC
C

Сертификация (в соответствии с типом)
60.12

- 2 группы контактов - силовые контакты 10 A 8-штырьковый разъем
60.13

- 3 группы контактов - силовые контакты 10 А 11-штырьковый разъем

2 перекидных контакта (DPDT)
$10 / 20$
$250 / 400$
2,500
500
0.37
$10 / 0.4 / 0.15$
$500(10 / 5)$
AgNi
$6-12-24-48-60-110$

3 перекидных контакта (3PDT)

$\frac{6-12-24-48-60-110-120-230-240-400}{6-12-24-48-60-110-125-220}$

$2.2 / 1.3$	$2.2 / 1.3$
$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.8 \ldots 1.1) \mathrm{U}$

\square
(0.8...1.1) U_{N}
$0.8 U_{N} / 0.5 U_{N}$
$0.2 U_{N} / 0.1 U_{N}$
$2 U_{N} / 0.1 U_{\mathrm{N}}$
$20 \cdot 10^{6 / 50} \cdot 10^{6}$

$200 \cdot 10^{3}$	$20 \cdot 10^{6} / 50 \cdot 10^{6}$

$11 / 4$
11/4
B

60 Серия - Универсальные реле 6-10 A

Характеристики

Съемная версия - 6 А Раздвоенные контакты для коммутации низкоуровневых сигналов

2 и 3 перекидных контакта
Материал контактов - бескадмиевый (Позолота, серебро, никель) катушки AC и DC
Блокируемая кнопка про верки с механическим указателем срабатывания (предпочтительная версия)
Для использования с розетками 90 серии модулями подавления электромагнитного импульса и таймерами 86 серия
Европейский патент

ПО КЛАССИФИКАЦИИ UL, МощНОСТь в Л.С.И НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток

Ном. напряжение/Макс. напряжение	B~
Номинальная нагрузка $A C 1$	BA

Номинальная нагрузка(230 B~) AC15 BA
Догустиман мощность однооразного двигателя (230B-) kBT
Отключающая способность DC1: 30/110/220 BA
Минимальный ток переключения мВт(B/мA)
Стандартный материал контакта

Характеристики катушки

Номин. напряж. $\left(\mathrm{U}_{\mathrm{N}}\right)$	V AC (50/60 Гц)
	V DC
Ном. мощн. AC/DC	ВA (50 Гц)/Вт
Рабочий диапазон	AC
	DC
Напряжение удержания	AC/DC
Напряжение отключения	AC/DC
Технические параметры	
Механическая долговечность AC/DC циклов	
Электр. договечность при ном. нагрузке АС1 циклов	
Время вкл/выкл	MC
Изоляция между катушкой и контактами $(1.250 \mu s) \mathrm{kB}$	
Электриескаяпроннстьмеждуотқьпымиконтактами VAC	
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	
Категория защиты	
Сертификация (в соответствии с типом)	

A	

60.12-5200

2 группы контактов - раздвоенные контакты 6 A

- 8-штырьковый разъем
60.13-5200

3 группы контактав - раздвоенные контакты 6 A - 11-штырьковый разъем

3 перекидных контакта (3PDT)
$\mathrm{AgNi}+\mathrm{Au}(5 \mu \mathrm{~m})$ раздвоенные контакты
$\mathrm{AgNi}+\mathrm{Au}(5 \mu \mathrm{~m})$ раздвоенные контакты

6-12-24-48-60-110-120-230-240-400			
6-12-24-48-60-110-125-220			
2.2/1.3	2.2/1.3		
(0.8...1.1) U_{N}	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$		
(0.8...1.1) U_{N}	(0.8 ..1.1) U_{N}		
$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$		
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$		
$20 \cdot 10^{6 / 50} \cdot 10^{6}$	$20 \cdot 10^{6} / 50 \cdot 10^{6}$		
$250 \cdot 10^{3}$	$250 \cdot 10^{3}$		
11/4	11/4		
4	3.6		
1,000	1,000		
-40...+70	-40...+70		
RT I	RT I		
(1) P	RINA	$\mathrm{c}^{7} \mathrm{I}_{\text {US }}$	

60 Серия - Универсальные реле 6-10 А

Характеристики

Универсальные

Реле 10 А с монтажным фланцем

- Монтажный фланец - (Клемма Faston 187, 4.8×0.5 мм)
2 и 3 перекидных контакта
катушки AC и DC
Контакты из бескадмиевого материала (предпочтительная версия)
Варианты материала контактов

ПО КЛАССИФИКАЦИИ UL, МощНОСТь в Л.С.И НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток

Ном. напряжение/Макс. напряжение	B
Номинальная нагрузка AC1	BA

Номинальная нагрузка(230 B~) AC15 BA

Дотустимая мощность однофазного двигателя (230 В $) ~ \mathrm{kBT}$
Отключающая способность DC1: 30/110/220 BA

Минимальный ток переключения мВт(B/мA)
Стандартный материал контакта
Характеристики катушки

)
B
$+$

- 2 группы контактов - силовые контакты 10 A
- Монтажный фланец/Faston 187
60.63

3 группы контактов - силовые контакты 10 A Монтажный фланец/Faston 187

3 перекидных контакта (3PDT)

60.62 - 2 группы контактов - силовые контакты 10 A - Монтажный фланец/Faston 187	60.63 - 3 группы контактов - силовые контакты 10 A - Монтажный фланец/Faston 187
2 перекидных контакта (DPDT)	3 перекидных контакта (3PDT)
10/20	10/20
250/400	250/400
2,500	2,500
500	500
0.37	0.37
10/0.4/0.15	10/0.4/0.15
500 (10/5)	500 (10/5)
AgNi	AgNi
6-12-24-48-60-110-120-230-240-400	
6-12-24-48-60-110-125-220	
2.2/1.3	2.2/1.3
(0.8...1.1) U_{N}	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
(0.8...1.1) U_{N}	(0.8...1.1) U_{N}
$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
$20 \cdot 10^{6} / 50 \cdot 10^{6}$	$20 \cdot 10^{6} / 50 \cdot 10^{6}$
$200 \cdot 10^{3}$	$200 \cdot 10^{3}$
11/4	11/4
4	3.6
1,000	1,000
-40...+70	$-40 \ldots+70$
RT I	RT I
CE (1) PG (1)	

60.62 - 2 группы контактов - силовые контакты 10 A - Монтажный фланец/Faston 187	60.63 - 3 группы контактов - силовые контакты 10 A - Монтажный фланец/Faston 187
2 перекидных контакта (DPDT)	3 перекидных контакта (3PDT)
10/20	10/20
250/400	250/400
2,500	2,500
500	500
0.37	0.37
10/0.4/0.15	10/0.4/0.15
500 (10/5)	500 (10/5)
AgNi	AgNi
6-12-24-48-60-110-120-230-240-400	
6-12-24-48-60-110-125-220	
2.2/1.3	2.2/1.3
(0.8...1.1) U_{N}	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
(0.8...1.1) U_{N}	(0.8...1.1) U_{N}
$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
$20 \cdot 10^{6} / 50 \cdot 10^{6}$	$20 \cdot 10^{6} / 50 \cdot 10^{6}$
$200 \cdot 10^{3}$	$200 \cdot 10^{3}$
11/4	11/4
4	3.6
1,000	1,000
-40...+70	-40...+70
RT I	RT I
CE (1) PG (1)	

2.2/1.3
\square
0.8
$(0.8 \ldots 1.1) U_{N}$
$(0.8 \ldots 1.1) U_{N}$
0.2

60.62 - 2 группы контактов - силовые контакты 10 A - Монтажный фланец/Faston 187	60.63 - 3 группы контактов - силовые контакты 10 A - Монтажный фланец/Faston 187
2 перекидных контакта (DPDT)	3 перекидных контакта (3PDT)
10/20	10/20
250/400	250/400
2,500	2,500
500	500
0.37	0.37
10/0.4/0.15	10/0.4/0.15
500 (10/5)	500 (10/5)
AgNi	AgNi
6-12-24-48-60-110-120-230-240-400	
6-12-24-48-60-110-125-220	
2.2/1.3	2.2/1.3
(0.8...1.1) U_{N}	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
(0.8...1.1) U_{N}	(0.8...1.1) U_{N}
$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
$20 \cdot 10^{6} / 50 \cdot 10^{6}$	$20 \cdot 10^{6} / 50 \cdot 10^{6}$
$200 \cdot 10^{3}$	$200 \cdot 10^{3}$
11/4	11/4
4	3.6
1,000	1,000
-40...+70	-40...+70
RT I	RT I
CE (1) PG (1)	

Информация по заказам

Пример: 60-я серия съемных реле, 3 перекидных контакта (3PDT), катушка на номинальное напряжение 12 V DC, кнопка проверки и механический индикатор.

$1=8 / 11$ выводов
$6=$ наконечник Faston 187
(4.8х0.8 мм)

Кол-во контактов \qquad
$2=2$ контакта
$3=3$ контакта
Тип катушки \qquad
2 = AgCdO
$5=\mathrm{AgNi}+\mathrm{Au}(5 \mu \mathrm{~m})$
B: Схема контактов
0 = CO (nPDT)
$2=$ Раздвоенные контокты
60.12/13 - только 6 А

4 = Токовое считывание (только для 60.12/13)
$8=$ АС (50/60 Гц)
9 = DC
Напряжение катушки \qquad
См. характеристики катушки

Выбор характеристик и опций: возможны комбинации только в одном ряду. Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	A	B	C	D
60.12/13	AC	0-2	0	0-2-3-4-5	0
	AC	0-2	0	54	1
	AC	5	0-2	0-2-3-4-5	0
	AC	5	0-2	54	1
	DC	0-2	0	0-2-4-6-7	0
	DC	0-2	0	74	1
	DC	5	0-2	0-2-4-6-7	0
	DC	5	0-2	74	1
	токовое считывание	0	0	4	0
60.62/63	AC-DC	0-2-5	0	0	0

Описание: опции и варианты

Блокируемая кнопка проверки и механический указатель срабатывания (0040, 0050, 0054, 0070, 0074)
Кнопку проверки двойного на значения Finder можно использовать двумя способами: Способ 1 Пла стиковый ключ (расположенный непосредственно под кнопкой проверкиا остается на месте. В этом слу чае при нажатии кнопки проверки контакты срабатывают. При отпускании кнопки проверки контакты возвращаются в исходное положение.
Способ 2 Пластиковый ключ отламываетсн (с помощью соответствую щего инструмента). В этом случае (в дополнение к указа нн ому выше) при нажатии и повороте кнопки проверки контакты замыкаются в рабочем положении и остаются в таком состоя нии до поворота кнопки проверки обратно в исходное положение. В обоих случаях кнопку следует нажимать (поворачивать) быстро и четко.

Технические параметры

Изоляция в соответствии с EN 61810-1 ed	2 контакта	3 контакта
Номинальное напрнжение питания VAC	230/400	230/400
Расчетное напряжение изоляции VAC	250 年 400	250 年 400
Уровень загрязнения	3	3
Изоляция между катушкой и контактной группой		
Тип изоляции	Базовый	Базовый
Категория перегрузки	III	III
Расчетное импульсное напряжение V (1.2/50 мкс)	4	3.6
Электрическая прочность VAC	2,000	2,000
Изоляция между соседними контактами		
Тип изоляции	Базовый	Базовый
Категория перегрузки	III	III
Расчетное импульсное напряжение kV (1.2/50 мкс)	4	3.6
Электрическая прочность VAC	2,000	2,000
Изоляция между разомкнутыми контактами		
Тип расцепления	Микро-расцепление	Микро-расцепление
Электрическая прочность V AC/kV (1.2/50 мкс)	1,000/1.5	1,000/1.5
Устойчивость к перепадам		
Разрыв (5..50)нс, 5 кГц, на А1-A2	EN 61000-4-4	уровень 4 (4 kV)
Импульс (1.2/50 мкс) на А1-A2 (при дифференциальном включении)	EN 61000-4-5	уровень 4 (4 kV)
Прочее		
	1/4	
Виброустойчивость ($5 \ldots 55 \mathrm{~Hz}$): НО/Н3 9	22/22	
Ударопрачность g	20	
Потери мощности без нагрузки Вт	1.3	1.3
при номинальном токе $\mathrm{Bt}^{\text {т }}$	2.7 (60.12, 60.62)	$3.4(60.13,60.63)$

Характеристика контактов

F 60 - Электрическая долговечность (AC) при ном. нагрузке

H 60 - Макс. отключающая способность DC1

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1.
Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Версия для АС

Номин. напряж. U_{N} V	Код катушки	Рабочий диапазон		Сопротивл. R	Потребл. споообность $\mathrm{Im}_{\mathrm{m}} \mathrm{U}_{\mathrm{N}}(50 \mathrm{H}-\mathrm{z})$
		$\mathrm{U}_{\text {min }}{ }^{*}$	$\mathrm{U}_{\text {max }}$		
		V	V	Ω	mA
6	8.006	4.8	6.6	4.6	367
12	8.012	9.6	13.2	19	183
24	8.024	19.2	26.4	74	90
48	8.048	38.4	52.8	290	47
60	8.060	48	66	450	37
110	8.110	88	121	1,600	20
120	8.120	96	132	1,940	18.6
230	8.230	184	253	7,250	10.5
240	8.240	192	264	8,500	9.2
400	8.400	320	440	19,800	6

Характеристики катушки

R 60 - Отношение рабочего диапазона для DC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Версии реле с токовым считыванием

Стандартное применение реле с токовым считыванием. Разомкнутая цепь лампы L1 определяется катушкой реле с токовым считыванием (K 1), которая подает питание на резервную предохранительную лампу L2, и на пульте управления загорается лампа S1, которая является индикатором сбоя.
Пример: навигационная лампа.
L1 = Лампа
L2 $=$ Предохранительнан лампа
S1 = Контрольная лампа
$K_{1}=$ Реле

R 60 - Отношение рабочего диапазона для АС к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напрнжение удержания катушки при температуре
1 - Макс. Допустимое напряжение на катушке. окружающей среды.

Параметры чувств. катушки DC

Код катушки	$\mathrm{I}_{\min }(\mathrm{A})$	$\mathrm{I}_{\mathrm{N}}(\mathrm{A})$	$\mathrm{I}_{\max }(\mathrm{A})$	$\mathrm{R}(\Omega)$
4202	1.7	2.0	2.4	0.15
4182	1.5	1.8	2.2	0.19
4162	1.4	1.6	1.9	0.24
4142	1.2	1.4	1.7	0.31
4122	1.0	1.2	1.4	0.42
4102	0.85	1.0	1.2	0.61
4092	0.8	0.9	1.1	0.75
4062	0.5	0.6	0.7	1.70
4032	0.25	0.3	0.4	6.70
4012	0.085	0.1	0.15	61

Параметры обмотки с токовым считыванием AC

Код катушки	$\mathrm{I}_{\min }(\mathrm{A})$	$\mathrm{I}_{\mathrm{N}}(\mathrm{A})$	$\mathrm{I}_{\max }(\mathrm{A})$	$\mathrm{R}(\Omega)$
4251	2.1	2.5	3.0	0.05
4181	1.5	1.8	2.2	0.10
4161	1.4	1.6	1.9	0.12
4121	1.0	1.2	1.4	0.22
4101	0.85	1.0	1.2	0.32
4051	0.42	0.5	0.6	1.28
4041	0.34	0.4	0.5	2.00
4031	0.25	0.3	0.4	3.57
4021	0.17	0.2	0.25	8.0
4011	0.085	0.1	0.15	32.1

Другие типы реле с токовым считыванием поставляются по дополнительному заказу.

Аксессуары

Список маркировочных этикеток для реле 60.12 и 60.13 , плостик, 72 знака, 6×12 мм 060.72

90 Серия - Розетки и аксессуары для реле 60 Серии

90.83 .3

См. стр. 10

90.23

См. стр. 10

Модель	Розетка	Реле	
-	90.26	60.12	
-	90.27	60.13	

Описание	Установка	Аксессуары
Розетка с винтовым зажимом	Панель или 35-мм рейка (EN 60715)	-Металлический зажим

90.26

См. стр. 11

| Модель | Розетка | Реле | Описание | Установка | Аксессуары |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| - | 90.12 | 60.12 | Установка пайкой на панель | Винтовое крепление
 МЗ | - |
| - | 90.13 | 60.13 | под пайку | МЗ | |

См. стр. 11

	Модель	Розетка	Реле	Описание	Установка	Аксессуары
	-	90.14	60.12	Розетка рев	Печатный монтаж	-
	-	90.14 .1	60.12			
90.15	-	90.15	60.13			
См. стр. 12	-	90.15.1	60.13			

	маркировка обмотки 99.01, модули подавления электромагнитного импульса для розеток 90.20 и 90.21		
			синий ${ }^{\text {a }}$
	диод (+A1, стандартная полярность)	(6...220)B DC	99.01.3.000.00
	диод (+А2, нестандартная полярность)	(6...220)B DC	99.01.2.000.00
	СВЕТОДИОД	(6...24)B DC/AC	99.01.0.024.59
	СВЕТОДИОД	(28...60)B DC/AC	99.01.0.060.59
Сертификация (В соответствии с типом):	СВЕТОДИОД	(110...240)B DC/AC	99.01.0.230.59
	СВЕТОДИОД + диод (+А1, стандартная полярность)	(6..24)B DC	99.01.9.024.99
PG	СВЕТОДИОД + диод (+А1, стандартная полярность)	(28...60)B DC	99.01.9.060.99
	СВЕТОДИОД + диод (+А1, стандартная полярность)	(110...220)B DC	99.01.9.220.99
	СВЕТОДИОД + диод (+А2, нестандартная полярность)	(6..24)B DC	99.01.9.024.79
	СВЕТОДИОД + диод (+А2, нестандартная полярность)	(28...60)B DC	99.01.9.060.79
* Модули в черном корпусе поставляются по заказу.	СВЕТОДИОД + диод (+А2, нестандартная полярность)	(110...220)B DC	99.01.9.220.79
	СВЕТОДИОД + Варистор	(6...24)B DC/AC	99.01.0.024.98
	СВЕТОДИОД + Варистор	(28...60)B DC/AC	99.01.0.060.98
Зеленый светодиод стандартная комплектация. Красный светодиод поставляется по заказу.	СВЕТОДИОД + Варистор	(110...240)B DC/AC	99.01.0.230.98
	RC-цепь	(6...24)B DC/AC	99.01.0.024.09
	RC-цепь	(28...60)B DC/AC	99.01.0.060.09
	RC-цепь	(110...240)B DC/AC	99.01.0.230.09
	Байпас начального тока	(110...240)B AC	99.01.8.230.07

90 Серия - Розетки и аксессуары для реле 60 Серии

90.82.3

90.83 .3

	Розетка с винтовым зажимом для монтажа на поверхность или 35 мм рейку (EN 60715)		90.22 синий	90.23 синий
	Тип реле		60.12	60.13
	Аксессуары			
	Металлическая клипса (поставляется с розеткой- код корпуса SMA)		090.33	
90.23	Технические параметры			
Сертифокация	Номинальные значения		$10 \mathrm{~A}-250 \mathrm{~V}$	
(В соответствии с типом):	Электрическая прочность		2 kV AC	
$\mathrm{crs}^{\text {US }}$	Категория защиты		IP 20	
	Температура окружающего воздуха	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	
	(2)3 Момент завинчивания	Нм	0.5	
	Длина зачистки провода	мм	7	
	Макс. размер провода для розеток		одножильный провод	многожильный провод
	90.22 и 90.23	MM ${ }^{2}$	1x6 / 2x2.5	1x6 / 2x2.5
		AWG	1x10 / 2x14	1x10 / 2x14

90.22

90.23

90.26

90.27

Сертификация (В соответствии с типом):

Фланцевое соединение (пайка) с винтом Мз	90.12 (черный)	90.13 (черный)
Тип реле	60.12	60.13
Технические параметры		
Номинальные значения	$10 \mathrm{~A}-250 \mathrm{~V}$	
Электрическая прочность	2 kV AC	
Тем п ература окружающего воздуха	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$

$C \in$ © (e) (1)

90.12

90.13

Коды на упаковке

Кодировка зажимов и упаковки розеток.

Варианты кодировки обозначаются тремя последними буквами:

62 Серия - Силовые реле 16 A

Характеристики

Силовое реле для установки на печатную плату, 16 А

2 и 3 перекидных контакта или НО (зазор ≥ 3 мм)
катушки AC и DC
Усиленная изоляция между катушкой и контактами согласно нормам EN 60335-1, с зазором 6 мм и длиной пути утечки 8 мм Разделитель катушки и контактов SELV Материал контактов - бескадмиевый (опция)

62.22

62.23

$62.2 x$

$62.2 x-0300$ 62.22-0300 62.23-0300

* Расстояние между контактами $\geq 3 \mathrm{~mm}$ (EN 60730-1).
** При использовании контактов AgSnO_{2} пиковый ток составляет 120 A- 5 мс (контакт NO).
ПО КЛАССИФИКАЦИИ UL, МОЩНОСТь в Л.С.И
НОМИНАЛ КОНТАКТОВ в ДЕЖУРНОМ РЕЖИМЕ, СМ.
"ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток А
Ном. напряжение/Макс. напряжение B~
Номинальная нагрузка AC1
Номинальная нагрузка ($230 \mathrm{~B} \sim$) AC15 BA
Догуст. мощностьодносразного двигателя (230/400 B~) кBT
Отключающая способность $\mathrm{DC} 1: 30 / 110 / 220 \mathrm{BA}$
Минимальный ток переключения $\mathrm{mBt}(\mathrm{B} / \mathrm{MA})$
Стандартный материал контакта
Характеристики катушки

Категория защиты
Сертификация (в соответствии с типом)

62.22 / 62.23

2 и 3 перекидных контакта

- Установка на печатнуюплату
62.22-0300 / 62.23-0300

2 и 3 нормально открытых контакта (зазор ≥ 3 мм) - Установка на печатнуюплату

62.22-0300
62.23-0300 Вид сбоку

Вид сбоку

| 2 перек. конт. (DPDT) 3 перек. конт. (3PDT) | 2 NO (DPST-NO),≥ 3 мм * 3 NO (3PST-NO), ≥ 3 мм ${ }^{*}$ |
| :---: | :---: | :---: |
| $16 / 30^{* *}$ | $16 / 30^{\star *}$ |

Характеристики

Силовое реле с Faston 187-16 A
Установка с помощью розеток 92 серии или Faston 187 (4.8×0.5 мм) с дополнительными адаптерами крепления 2 и 3 перекидных контакта или НО (зазор ≥ 3 мм) катушки AC и DC
По классификации UL (определенные комбинации реле/ розеток)
Светодиод, механический индикатор, кнопка тестирования (опции) Усиленная изоляция между катушкой и контактами согласно нормам EN 60335-1, с зазором 6 мм и длиной пути утечки 8 мм Разделитель катушки и контактов SELV (опция) Материал контактов - бескадмиевый (опция) Розетки и аксессуары
Европейский патент

62.32 / 62.33

2 и 3 перекидных контакта Фланец / Faston 187
62.32-0300 / 62.33-0300

2 и 3 нормально открытых контакта (зазор ≥ 3 мм) Фланец / Fastoп 187

62.32-0300
62.33-0300

НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ
"ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение \quad B~
Номинальная нагрузка AC1
Номинальная нагрузка (230 B~) AC15 BA
Допуст. мощность односазнного двигателя (230/400 B~) кВТ
Отключающая способность DC1: 30/110/220 BA
Минимальный ток переключения $\mathbf{~} \mathrm{Bt}(\mathrm{B} / \mathrm{mA})$
Стандартный материал контакта
Характеристики катушки

Характеристики

Силовое реле с монтажным фланцем/Fastoп 250-16A

- Клемма Faston 250 (6.3×0.8 мм) Фланцевые или (опция) адаптеры крепления 2 и 3 перекидных контакта или НО (зазор ≥ 3 мм)
катушки AC и DC
Светодиод, механический индикатор кнопка тестирования (опции)
Усиленная изоляция между катушкой и контактами согласно нормам EN 60335-1, с зазором 6 мм и длиной пути утечки 8 мм Разделитель катушки и контактов SELV (опция) Материал контактов - бескадмиевый (опция) Европейский патент

62.82 62.82-0300 62.83-0300
62.83

62.8 x

62.8x-0300

Расстояние между контакт. ≥ 3 мм (EN 60730-1)
** При использовании контактов AgSnO_{2} пиковый ток составляет $120 \mathrm{~A}-5$ мс (контакт NO)
ПО КЛАССИФИКАЦИИ UL, МОЩНОСТь в Л.С.И
НОМИНАЛ КОНТАКТОВ в ДЕЖУРНОМ РЕЖИМЕ, СМ.
"ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток A
Ном. напряжение/Макс. напряжение B~
Номинальная нагрузка АС1 BA
Номинальная нагрузка (230 B~) AC15 BA
Допуст. мощностьодносразного двигателя (230/400 B \rightarrow) кВт
Отключающая способность DC1: 30/110/220 BA
Минимальный ток переключения мВт(В/МА)
Стандартный материал контакта

Характеристики катушки

Номин. напряж. $\left(\mathrm{U}_{N}\right)$
$\operatorname{VAC}(50 / 60$ Гц) VDC
Категория защиты

Сертификация (в соответствии с типом)
62.82 / 62.83

. 2 и 3 перекидных контакта - Фланец / Fastoп 250

Информация по заказам

Пример: Силового реле 62 -й серии + Faston 250 (6.3×0.8 мм), фланец сзади, 2 NO (DPST-NO), катушка 12 B DC.

Тип

2 = монтаж на печатную плату
3 = монтаж в розетку
$8=$ Faston 250 (6.3×0.8 мм) с фланцем сзади
Кол-во контактов
$2=2$ контакта
$3=3$ контакта
Тип катушки
$8=A C(50 / 60$ Гц)
9 = DC
Напряжение катушки
См. характеристики катушки

Выбор характеристик и опций: возможны комбинации только в одном ряду. Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	A	B	C	D
62.22/23	AC-DC	0-4	0-3-5-6	0	0
62.32/33	AC-DC	0-4	0-3-5-6	0	0-6
	AC-DC	0-4	0-5	2-4	0-6
	AC	0-4	0	2-3-4-5	0-6
	AC	0-4	0-3	3	0-6
	AC	0-4	0	54	1
	DC	0-4	0	4-6-7	0-6
	DC	0-4	0-3	6	0-6
	DC	0-4	0	74	1
62.82/83	AC-DC	0-4	0-3-5-6	0	0-9
	AC-DC	0-4	0-5	2-4	0
	AC	0-4	0	2-3-4-5	0
	AC	0-4	0-3	3	0
	DC	0-4	0	4-6-7	0
	DC	0-4	0-3	6	0

Описание: опции и варианты

Блокируемая кнопка проверки и механический указатель срабатывания (0040, 0050, 0054, 0070, 0074)
Кнопку проверки двойного на значения Finder можно использовать двумя способами: Способ 1 Пла стиковый ключ (расположенный непосредственно под кнопкой проверкии остается на месте. В этом слу чае при нажатии кнопки проверки контакты срабатывают. При отпускании кнопки проверки контакты возвращаются в исходное положение.
Способ 2 Пластиковый ключ отламывается (с помощью соответствую щего инструмента). В этом случае (в дополнение к указа нн ому выше) при нажатии и повороте кнопки проверки контакты замыкаются в рабочем положении и остаются в таком состоя нии до поворота кнопки проверки обратно в исходное положение. В обоих случаях кнопку следует нажимать (поворачивать) быстро и четко.

Технические параметры

	2 перек. конт. - 3 перек. конт.		2 NO-3 NO	
Номинальное напряжение питания VAC	230/400		230/400	
Расчетное напряжение изоляции VAC	400		400	
Уровень загрязнения	3		3	
Изоляция между катушкой и контактной группой				
Тип изоляции	Усиленный		Усиленный	
Категория перегрузки	III		III	
Расчетное импульсное напряжение kV (1.2/50 мкс)	6		6	
Электрическая прочность V AC	4,000		4,000	
Изоляция между соседними контактами				
Тип изоляции	Базовый		Базовый	
Категория перегрузки	III		III	
Расчетное импульсное напряжение kV (1.2/50 мкс)	4		4	
Электрическая прочность VAC	2,500		2,500	
Изоляция между разомкнутыми контактами				
Тип расцепления	Микро-расцепление		Полное расцепление	
Категория перегрузки	-		III	
Расчетное импульсное напряжение kV (1.2/50 мкс)	-		4	
Электрическая прочность V AC/kV (1.2/50 мкс)	1,500/2		2,500/4	
Устойчивость к перепадам				
Разрыв (5..50)нс, 5 кГц, на А1-А2	EN 61000-4-4		уровень 4 (4 kV)	
Импульс (1.2/50 мкс) на А1-A2 (при диффференциальном включении)	EN 61000-4-5		уровень 4 (4 kV)	
Прочее				
Время дребезга: НО/НЗ mс	1/5 (перекидной контакт)		3/- (нормально открытый)	
Виброустойчивость (10..150 Hz): НО/НЗ g	20/8			
Ударопрачность g	15			
Потери мощности	2 перек. конт.	3 перек. конт.	2 NO	3 NO
	1.3	1.3	3	3
при номинальном токе Вт	3.3	4.3	5	6
Рекомендуемое расстояние между реле на плате мм	≥ 5			

Характеристика контактов

F 62 - Электрическая долговечность (AC) при ном. нагрузке

H 62 - Макс. отключающая способность DC1
Перекидные контакты

H 62 - Макс. отключающая способность DC1
Нормально открытые контакты

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1. Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики катушки

Версия для DC

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Сопротивл.R	Потребл. I при U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max }$		
B		B	B	Ω	MA
6	9.006	4.8	6.6	28	214
12	9.012	9.6	13.2	110	109
24	9.024	19.2	26.4	445	54
48	9.048	38.4	52.8	1,770	27
60	9.060	48	66	2,760	21.7
110	9.110	88	121	9,420	11.7
125	9.125	100	138	12,000	10.4
220	9.220	176	242	37,300	5.8

Версия для DC (NO/nPST-NO) - $\geq 3 \mathrm{~mm}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline Номин. напряж. U_{N} \& Код катушки \& Рабоч

$U_{\text {min }}$ \& иапазон

\[
\mathrm{U}_{\max }

\] \& | Сопротивл. |
| :--- |
| R | \& Потребл. I при U_{N}

\hline B \& \& B \& B \& Ω \& MA

\hline 6 \& 9.006 \& 5.1 \& 6.6 \& 12 \& 500

\hline 12 \& 9.012 \& 10.2 \& 13.2 \& 48 \& 250

\hline 24 \& 9.024 \& 20.4 \& 26.4 \& 192 \& 125

\hline 48 \& 9.048 \& 40.8 \& 52.8 \& 770 \& 63

\hline 60 \& 9.060 \& 51 \& 66 \& 1,200 \& 50

\hline 110 \& 9.110 \& 93.5 \& 121 \& 4,200 \& 26

\hline 125 \& 9.125 \& 106 \& 138 \& 5,200 \& 24

\hline 220 \& 9.220 \& 187 \& 242 \& 17,600 \& 12.5

\hline
\end{tabular}

R 62 - Отношение рабочего диапазона для DC к температуре окр. среды - Перекидные контакты

R 62 - Отношение рабочего диапазона для DC к температуре окр. среды - Нормально открытые контакты

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Версия для АС

Номин. напряж. U_{N} V	Код катушки	Рабочий диапазон		Сопротивл. R	Потребл. способность $\mathrm{InonU}_{\mathrm{N}}(50 \mathrm{~Hz})$
		$\mathrm{U}_{\text {min }}{ }^{*}$	$\mathrm{U}_{\text {max }}$		
		V	V	Ω	mA
6	8.006	4.8	6.6	4.6	367
12	8.012	9.6	13.2	19	183
24	8.024	19.2	26.4	74	90
48	8.048	38.4	52.8	290	47
60	8.060	48	66	450	37
110	8.110	88	121	1,600	20
120	8.120	96	132	1,940	18.6
230	8.230	184	253	7,250	10.5
240	8.240	192	264	8,500	9.2
400	8.400	320	440	19,800	6

Версия для AC (NO/nPST-NO) - $\geq 3 \mathrm{~mm}$

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Сопротивл. R	Потребл. способность $\mathrm{I}_{\mathrm{IOH}}^{\mathrm{M}} \mathrm{U}_{\mathrm{N}}(50 \mathrm{H}-\mathrm{z})$
		$\mathrm{U}_{\text {min }}{ }^{*}$			
V		V	V	Ω	mA
6	8.006	5.1	6.6	4	540
12	8.012	10.2	13.2	14	275
24	8.024	20.4	26.4	62	130
48	8.048	40.8	52.8	220	70
60	8.060	51	66	348	55
110	8.110	93.5	121	1,200	30
120	8.120	106	137	1,350	24
230	8.230	196	253	5,000	14
240	8.240	204	264	6,300	12.5
400	8.400	340	440	14,700	7.8

R 62- Отношение рабочего диапазона для АС к температуре окр. среды - Перекидные контакты

R 62 - Отношение рабочего диапазона для AC к температуре окр. среды - Нормально открытые контакты

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Аксессуары

062.10

062.10 с реле

062.60

062.60 с реле

062.05 с реле

Адаптер крепления дпя типов $62.3 x$ и 62.8x.xxxx.xxx9 (M4)

062.10
062.10 с репе

фланцевый адаптер крепления дпя типов 62.3 x и $62.8 \mathrm{x} . \mathrm{xxxx} . \mathrm{xxx} 9$
062.60

фланцевый адаптер крепления дпя типов 62.3x и 62.8x.xxxx.xxx9
062.05

062.05

062.05 c pene

Аксессуары

062.08 с реле
060.72

Адаптер $35-\mathrm{m}$ м рейки (EN 60715) дпя типов 62.3 x и $62.8 \mathrm{x} . \mathrm{xxxx} . \mathrm{xxx} 9$ 062.08

062.08

062.08 с репе

Розетка с винтовым зажимом для монтажа на
поверхность или 35 мм рейку (EN 60715)
Тип реле
Аксессуары

Металлическая кпипса (поставляется с розеткой- код корпуса SMA)	092.71	
Идентификационная метка	092.00.2	
Модули (см. таблицу ниже)	99.02	
Модульные таймеры (см. таблицу ниже)	86.00, 86.30	
Технические параметры		
Номинальные значения	$16 \mathrm{~A}-250 \mathrm{~V}$	
Изоляция	6 kV (1.2/50 мкс) между обмоткой и контактами	
Категория защиты	IP 20	
Температура окружающей среды ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$ (см. график L92)	
(4)라) Момент завинчивания Нм	0.8	
Длина зачистки провода мм	10	
Макс размер провода для розеток 92.03	одножильный провод	многожильный провод
$M M^{2}$	1x10 / 2x4	1x6 / 2x4
AWG	1x8/2x12	1x10 / 2x12

L 92 - Номинальный ток при темп. окружающей среды

86.00

Модульные таймеры 86 серии

Возможность работы при различных напряжениях: (12...240) V AC/DC;
Многофункциональность: AI, DI, SW, BE, CE, DE, EE, FE; (0.05 с... 100 мин.)
(12...24)B AC/DC; Монофункциональный: AI, DI; (0.05с...100мин.)
(110...125)В AC; Монофункциональный: AI, DI; (0.05с...100мин.)
(230...240)B AC; Монофункциональный: AI, DI; (0.05с...100мин.)
8.00.0.240.0000
86.30.0.024.0000
86.30.8.120.0000
86.30.8.240.0000

Сертификация

(В соответствии с типом): C \mathcal{C} с TI $_{\text {US }}$

диод (+А1, стандартная полярность)	(6...220)B DC	99.02.3.000.00
СВЕТОДИОД	(6...24)B DC/AC	99.02.0.024.59
СВЕТОДИОД	(28...60)B DC/AC	99.02.0.060.59
СВЕТОДИОД	(110...240)B DC/AC	99.02.0.230.59
СВЕТОДИОД + диод (+А 1, стандартная полярность)	(6...24)B DC	99.02.9.024.99
СВЕТОДИОД + диод (+А 1, стандартная полярность)	(28...60)B DC	99.02.9.060.99
СВЕТОДИОД + диод (+А 1, стандартная полярность)	(110...220)B DC	99.02.9.220.99
СВЕТОДИОД + Варистар	(6...24)B DC/AC	99.02.0.024.98
СВЕТОДИОД + Варистар	(28...60)B DC/AC	99.02.0.060.98
СВЕТОДИОД + Варистар	(110...240)B DC/AC	99.02.0.230.98
RC-цепь	(6...24)B DC/AC	99.02.0.024.09
RC-цепь	(28...60)B DC/AC	99.02.0.060.09
RC-цепь	(110...240)B DC/AC	99.02.0.230.09
Байпас начальноготока	(110...240)B AC	99.02.8.230.07

Сертификация (В соответствии с типом):
(16) (1) PG $\mathrm{CH}_{\mathrm{US}}^{\circ}$

Розетка рев	92.13 (синий)	$\mathbf{9 2 . 1 3 . 0}$ (черный)
Тип реле	$62.32,62.33$	
Аксессуары		
Металлическая клипса (поставляетсяс розеткой-код корпуса SMA)	092.54	
Технические параметры		
Номинальные значения	$10 \mathrm{~A}-250 \mathrm{~V}$	
Электрическая прочность	2.5 kV AC	
Температура окружающего воздуха	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$

Установка на панель (пайка) с винтом М3
Тип реле

Аксессуары

Металлическая клипса (поставлдетсяс розеткой- код корпуса SMA) 092.54
92.33

Сертификация (В соответствии с типом):
 ${ }_{C} \mathrm{Tl}_{\text {US }}^{\circ}$

Технические параметры

Номинальные значения	$10 \mathrm{~A}-250 \mathrm{~V}$	
Электрическая прочность	2.5 kV AC	
Температура окружающего воздуха	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$

Коды на упаковке

Кодировка зажимов и упаковки розеток.
Варианты кодировки обозначаются тремя последними буквами:

65 Серия - Силовые реле 20-30 A

Характеристики

Силовые реле 20 A
1 HO + 1 H3 (SPST-NO + SPST-NC)
65.31 фланцевая установка (разъемы Faston 250)
65.61 Печатный монтаж

- катушки AC и DC

возможно бескадмиевое исполнение (опция)

* При использовании контактов AgSnO_{2} пиковый ток составляет 120 A-5 мс (контакт NO). По классифИкации UL, Мощность в л.с.и НоМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V		Вид сбоку
Контактные характеристики		
Контактная группа (конфигурация)	1NO+1NC (SPST-NO+SPST-NC)	1NO+1NC (SPST-NO+SPST-NC)
Номинальный ток/Макс. пиковый ток A	20/40*	20/40*
Ном. напряжение/Макс. напряжение В~	250/400	250/400
Номинальнан нагрузка AC1 BA	5,000	5,000
Номинальнан нагрузка (230 B~) AC15 BA	1,000	1,000
Допуст. мощность однофазного двигателя (230 B) кBт	1.1	1.1
Отключающая способность DC1: 30/110/220 BA	20/0.8/0.5	20/0.8/0.5
Минимальный ток переключения мВт(B/mA)	1,000 (10/10)	1,000 (10/10)
Стандартный материал контакта	AgCdO	AgCdO
Характеристики катушки		
Номин. напряж. (U_{N}) V AC (50/60 Гц)	6-12-24-48-60-110-120-230-240-400	
V DC	6-12-24-48-60-110-125-220	
Ном. мощн. AC/DC BA (50 Гц)/Вт	2.2/1.3	2.2/1.3
Рабочий диапазон AC	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	(0.8...1.1) U_{N}
DC	(0.85...1.1) U_{N}	(0.85...1.1) U_{N}
Напряжение удержания AC/DC	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$
Напряжение отключения AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Технические параметры		
Механическая долговечность AC/DC циклов	$10 \cdot 10^{6} / 30 \cdot 10^{6}$	$10 \cdot 10^{6} / 30 \cdot 10^{6}$
Электр. договечность при ном. нагрузке АС1 циклов	$80 \cdot 10^{3}$	$80 \cdot 10^{3}$
Время вкл/выкл мс	10/12	10/12
Изоляция между обмоткой и контактами (1.2/50 s) kB	4	4
Электриескадпрочнсттмеждуоткрытымиконактам VAC	1,500	1,500
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-40...+75	$-40 \ldots+75$
Категория защиты	RT I	RT I
Сертификация (в соответствии с типом)	$C E \text { C PG }$	(1) $c \mathrm{Tl}_{\text {US }} \mathrm{D}_{\mathrm{E}}$

Характеристики

Силовые реле 30 A
 1 HO (SPST-NO)

65.31-0300 фланцевая установка (разъемы Faston 250)
65.61-0300 Печатный монтаж

зазор $\geq 3 \mathrm{~mm}$
катушки AC и DC
возможно бескадмиевое исполнение (опция)

* Расстояние между контоктоми $\geq 3 \mathrm{~mm}$ (EN 60335-1).
** При использовании контактов AgSnO_{2} пиковый ток составляет 120 А - 5 мс (контакт NO).
ПО КласСИФИКАЦии UL, Мощность в л.с.и
НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ.
"ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V
Контактные характеристики
Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение B
Номинальнан нагрузка AC1
Номинальнан нагрузка (230 B~) AC15 BA
Допуст. мощность однофазного двигателя (230 B $) ~ \mathrm{kB}$
Отключающая способность DC1: 30/110/220 BA
Минимальный ток переключения $\mathbf{~} \mathrm{Bt}(\mathrm{B} / \mathrm{MA})$
Стандартный материал контакта
Характеристики катушки
Номин. напряж. $\left(\mathrm{U}_{\mathrm{N}}\right) \quad \mathrm{VAC}(50 / 60$ Гц)

V DC	6-12-24-48-60-110-125-220	
Ном. мощн. AC/DC BA (50 Гц)/Вт	2.2/1.3	2.2/1.3
Рабочий диапазон AC	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
DC	(0.85...1.1) U_{N}	(0.85...1.1) U_{N}
Напряжение удержания AC/DC	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$
Напряжение отключения AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Технические параметры		
Механическая долговечность AC/DC циклов	$10 \cdot 10^{6 / 30} \cdot 10^{6}$	$10 \cdot 10^{6} / 30 \cdot 10^{6}$
Электр. договечность при ном. нагрузке АС1 циклов	$50 \cdot 10^{3}$	$50 \cdot 10^{3}$
Время вкл/выкл мс	15/4	15/4
Изоляция между обмоткой и контактами $(1.2 / 50 \mu \mathrm{~s}) \mathrm{kB}$	4	4
Электричскадпронностьмеждуоткьтьмиконтактами VAC	2,500	2,500
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-40...+75	$-40 \ldots+75$
Категория защиты	RT I	RT I
Сертификация (в соответствии с типом)	$C E W \text { PG }$	$\mathrm{c} \mathrm{~N}_{\mathrm{US}}^{8}$

Информация по заказам

Пример: Силовое реле 65 -й серии, печатный монтаж, раздвоенные контакты, 1 контакт H3 + 1 HO (SPST-NO + SPST-NC), катушка 12 B DC.

Серия

Тип
3 = Faston $250(6.3 \times 0.8 \mathrm{~mm}) \mathrm{c}$ фланцем сзади
$6=$ печатный монтаж, раздвоенные контакты
Кол-во контактов
$1=1$ NO +1 NC (SPST-NO + SPST-NC)
Тип катушки
$8=A C(50 / 60 Г ц)$
9 = DC

Напряжение катушки

См. характеристики катушки

Характеристика контактов

F 65 - Электрическая долговечность (AC) при ном. нагрузке

Н 65 - Макс. отключающая способность DC1

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $80 \cdot 10^{3}$ циклов
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1.
Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики катушки

Версия для DC

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Сопротивл R	Потребл. I при U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max }$		
B		B	B	Ω	MA
6	9.006	5.1	6.6	28	214
12	9.012	10.2	13.2	110	109
24	9.024	20.4	26.4	445	54
48	9.048	40.8	52.8	1,770	27.1
60	9.060	51	66	2,760	21.7
110	9.110	93.5	121	9,420	11.7
125	9.125	106	138	12,000	10.4
220	9.220	187	242	37,300	5.8

R 65-Отношение рабочего диапазона для DC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Версия для AC

R 65 - Отношение рабочего диапазона для AC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

65 Серия - Силовые реле 20-30 A

Аксессуары

065.05 с реле

фланцевый адаптер крепления для реле типов 65.31.xxxx.xxx9 065.05

065.05

065.05 с реле

065.07 с реле

Адаптер 35 мм рейки (EN 60715) для реле типов 65.31.xxxx.xxx9

065.07

065.07 с реле

065.08 с реле

Адаптер 35 мм рейки (EN 60715) для реле типов 65.31.xxxx.xxx9

065.08

065.08 с реле

Характеристики

2 перекидных контакта (DPDT)

 Силовое реле 30 A66.22 Разъемы и установка на печатную плату
66.82 Соединения Faston 250 - Фланцевый разъем

- Усиленная изоляция между катушкой и контактами согласно нормам EN 60335-1, с зазором 8 мм
катушки AC и DC
возможно бескадмиевое исполнение (опция)

См. чертеж на стр. 6
По клАсСИФИкации UL, Мощность в л.с.и НОМИНАЛ КОНТАКТОВ в дЕЖУРНОМ РЕЖИМЕ, СМ. "ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Характеристики

2 контакта HO (DPST-NO)
Силовое реле 30 A

66.22-х300 Печатный монтаж 66.82-х300 Соединения Faston 250 - фланец

Усиленная изоляция между катушкой и контактами согласно нормам EN 60335-1, с зазором 8 мм
катушки AC и DC
возможно бескадмиевое исполнение (опция)

См. чертеж на стр. 6
ПО КЛАССИФИКацИИ UL, МощНОСть в л.С.И НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток

Ном. напряжение/Макс. напряжение	$\mathrm{B} \sim$
Номинальная нагрузка АС1	BA

Номинальная нагрузка (230 B~) AC15 BA
Допуст. мощность однофазного двигателя (230 B) kBт
Отключающая способность DC1: 30/110/220 BA
Минимальный ток переключения мВт(B/мA)
Стандартный материал контакта

Характеристики катушки

Номин. напряж. $\left(\mathrm{U}_{\mathrm{N}}\right) \quad \mathrm{VAC}(50 / 60$ Гц)

V DC		-125
Ном. мощн. AC/DC $\mathrm{BA}^{\text {(50 Гц)/Вт }}$	3.6/1.7	3.6/1.7
Рабочий диапазон AC	(0.8...1.1) U_{N}	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
DC	(0.8...1.1) U_{N}	(0.8..1.1) U_{N}
Напряжение удержания AC/DC	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U} / 0.5 \mathrm{U}_{\mathrm{N}}$
Напряжение отключения AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U} / 0.1 \mathrm{U}_{\mathrm{N}}$
Технические параметры		
Механическая долговечность AC/DC циклов	$10 \cdot 10^{6}$	$10 \cdot 10^{6}$
Электр. договечность при ном. нагрузке AC1 циклов	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Время вкл/выкл мс	8/10	8/10
Изоляция между катушкой и контактами $(1.250 \mu \mathrm{~S}) \mathrm{kB}$	6 (8 mm)	6 (8 mm)
Электринекаяпронностьмеждуотқрытымиконтактам VAC	1,500	1,500
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	$-40 \ldots+70$
Категория защиты	RT II	RT II
Сертификация (в соответствии с типом)	$C \in S$	${ }^{C} \mathrm{~N}_{\text {US }}^{\infty} \mathrm{D}_{\mathrm{D}}^{\mathrm{V}}$

Характеристики
2 контакта HO (DPST-NO), зазор $\geq 1.5 \mathrm{~mm}$ Силовое реле 30 A
66.22-x600 Печатный монтаж
66.22-x600S Печатный монтаж, зазор между печатной платой и основанием реле - 5 мм
66.82-х600 Соединения Faston 250 - фланец

зазор между контактами ≥ 1.5 мм (согл. VDE 0126-1-1 Для приложений с солнечными инвертерами)
Усиленная изоляция между катушкой и контактами согласно нормам EN 60335-1, с зазором 8 мм
Влагонепроницаемая версия (RT III) катушки DG
возможно бескадмиевое исполнение (опция)

См. чертеж на стр. 6
По КЛАССИФИКАЦИИ UL, МощНость в л.с.И НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Контактные характеристики

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток

Ном. напряжение/Макс. напряжение	B~
Номинальная нагрузка $\mathrm{AC1}$	BA

Номинальная нагрузка (230 B~) AC15 BA

Допуст. мощность однофазного двигатела (230 B~) кBT
Отключающая способность DC1: 30/110/220 B A

Минимальный ток переключения $\operatorname{mBt}(\mathrm{B} / \mathrm{MA})$
Стандартный материал контакта
Характеристики катушки

Категория защиты

Сертификация (в соответствии с типом)

66 Серия - Силовое реле 30 A

- Печатный монтаж раздвоенные клеммы
- Печатный монтаж раздвоенные клеммы
- 5 мм зазор между печатной платой и основанием реле

фланец

- Соединения Faston 250

Вид сбоку

Вид сбоку
2 HO (DPST-NO)
$30 / 50$
$250 / 440$
7,500
1,200
1.5
$30 / 1.2 / 0.5$
$1,000(10 / 10)$
AgCdO

Вид сбоку

Информация по заказам

Пример: Силовое реле 66-й серии, Faston $250(6.3 \times 0.8$ мм) с фланцевым разъемом снизу, 2 контакта CO (DPDT) 30 A, катушка 24 B DC.

9 = DC

Напряжение катушки

См. характеристики катушки

Выбор характеристик и опций: возможны комбинации только в одном ряду.
Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	A	В	C	D
66.22	AC-DC	$\mathbf{0 - 1}$	$\mathbf{0 - 3}$	$\mathbf{0}$	$\mathbf{0 - 1}$
	DC	$\mathbf{0 - 1}$	$\mathbf{6}$	$\mathbf{0}$	$0-1$
$66.22 \ldots . \mathrm{S}$	DC	$\mathbf{0 - 1}$	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{0 - 1}$
66.82	AC-DC	$\mathbf{0 - 1}$	$\mathbf{0 - 3}$	$\mathbf{0}$	$0-\mathbf{1}$
	DC	$\mathbf{0 - 1}$	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{0 - 1}$

Технические параметры

Изоляция в соответствии с EN 61810-1 ed		
Номинальное напряжение питания V AC	230/400	
Расчетное напряжение изоляции VAG	400	
Уровень загрязнения	3	
Изоляция между катушкой и контактной группой		
Тип изоляции	Усиленный (8 mm)	
Категория перегрузки	III	
Расчетное импульсное напряжение kV (1.2/50 мкс)	6	
Электрическая прочность V AC	4,000	
Изоляция между соседними контактами		
Тип изоляции	Базовый	
Категория перегрузки	III	
Расчетное импульсное напряжение kV (1.2/50 мкс)	4	
Электрическая прочность V AC	2,500	
Изоляция между разомкнутыми контактами	2 CO	$2 \mathrm{HO}, \geq 1.5 \mathrm{~mm}$ (х600 версия)
Тип расцепления	Микро-расцепление	Полное расцепление *
Категория перегрузки	-	II
Расчетное импульсное напряжение kV (1.2/50 мкс)	-	2.5
Электрическая прочность V AC/kV (1.2/50 мкс)	1,500/2	2,500/3
Устойчивость к перепадам		
Разрыв (5...50)нс, 5 кГц, на А1-А2	EN 61000-4-4	уровень 4 (4 kV)
Импульс (1.2/50 мкс) на А1-A2 (при дифференциальном включении)	EN 61000-4-5	уровень 4 (4 kV)
Прочее		
Время дребезга: НО/Н3 мс	7/10	
Виброустойчивость (10..150 Hz): НО/НЗ g	20/19	
Ударопрачность g	20	
Потери мощности без нагрузки Вт	2.3	
при номинальном токе Вт	5	
Рекомендуе мое расстояние между реле на плате мм	≥ 10	

[^3] Микро-расцепление.

Характеристика контактов

F 66 - Электрическая долговечность (АС) при ном. нагрузке 250 В (нормально открытый контокт)

H 66 - Макс. отключающая способность DC

F 66 - Электрическая долговечность (АС) при ном. нагрузке 440 В (нормально открытый контакт)

H 66 - Макс. отключающая способность DC, $\mathbf{x} 600$ версии (зазор $>1.5 \mathrm{Mm}$)

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1.

Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики катушки

Версия для DC

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Сопротивл. R	Потребл. I при U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
B		B	B	Ω	MA
6	9.006	4.8	6.6	21	283
12	9.012	9.6	13.2	85	141
24	9.024	19.2	26.4	340	70.5
110	9.110	88	121	7,000	15.7
125	9.125	100	138	9,200	13.6

R 66 - Отношение рабочего диапазона для DC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды
3 - Мин. Напряжение удержания катушки при температуре окружающей среды (66.22-х600S).

Версия для АС

Номин.	Код	Рабочий диапазон		Сопротивл.	Потребл.
напряж. U_{N}	катушки	$\mathrm{U}_{\min }{ }^{*}$	$\mathrm{U}_{\max }$	R	споообность
V		V	V	Ω	mA
6	8.006	4.8	6.6	3	600
12	8.012	9.6	13.2	11	300
24	8.024	19.2	26.4	50	150
110/115	8.110	88	126	930	32.6
120/125	8.120	96	137	1,050	30
230	8.230	184	253	4,000	15.7
240	8.240	192	264	5,500	15

R 66 - Отношение рабочего диапазона для AC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Чертежи

Тип 66.22

Тип 66.22-0300

Тип 66.22-0600

Тип 66.82

Тип 66.82-0300

Тип 66.82-0600

Тип 66.22-0600S

Аксессуары

066.07

066.07 с реле

066.07

066.07 с реле

Характеристики

- Простое извлечение реле при помощи пластикового зажима
- Встроенная защита катушки и контур индикации - Установка на 35 -мм рейку (EN 60715)

ширина 6.2 мм
EMR - версии катушек DC, AC или AC/DC SSR - входные контуры DC или AC/DC
Винтовые и зажимные варианты клемм
EMR
Электромеханическое реле

SSR
твердотельные реле

Специальные типы с подавлением ток
ширина 6.2 мм

Винтовые и зажимные варианты клемм

ширина 14 мм
2-полюсные 8 А или 1-полюсные 16 А EMR - Версии катушек DC или AC/DC
SSR - Входные контуры DC
Винтовые и зажимные варианты клемм

2CO-8A250VAC

Однополюсный выход: Варианты 0.1A 48VDC, 2A 24VDC, 2A 240VAC
Безшумная работа, высокая скорость переключения
Высокая электрическая долговечность

1 CO-6 A 250VAC
38.81.3...-38.91.3...

Однополюсный выход: Варианты 0.1А 48VDC, 2A 24VDC, 2A 240VAC
Безшумная работа, высокая скорость переключения
Высокая электрическая долговечность
38.21...9024-8240

Однополюсный выход:
Варианты 2A 24VDC, 2A 240VAC
Безшумная работа, высокая скорость переключения
Высокая электрическая долговечность Стр. 3
38.31/38.41

Однополюсный выход:
Варианты 5A 24VDC, 3A 240VAC
Безшумная работа, высокая скорость переключения
Высокая электрическая долговечность

38 серия - Интерфейсные модули реле - EMR, 1-полюсные, 6A

Характеристики

Интерфейсные модули электромеханического реле с 1 контактом - 6 А ширина 6.2 мм.
Идеальный интерфейс для ПЛК и электронных систем

- Исполнение с чувствительной катушкой DC или катушкой AC/DC
Встроенная схема индикации и защиты катушки
Мгновенное извлечение реле с помощью пластикового зажима
Сертифицировано UL
Установка на 35-мм рейку (EN 60715)
38.51 / 38.51 .3

Винтовой зажим
38.61 / 38.61.3 Пружинный зажим

* Специальные версии для температуры окружающей среды до $+70^{\circ} \mathrm{C}$.
См. чертеж на стр. 12

Характеристика контактов

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение B
$\begin{array}{ll}\text { Номинальная нагрузка AC1 } & \text { BA } \\ \text { Номинальная нагрузка (230 B~) AC15 } & \text { BA }\end{array}$
Догуст. мощность однофазного двигателя (230 B-) kBт
Отключающая способность DC1: 30/110/220 B A
Минимальный ток переключения мВт $\{\mathrm{B} / \mathrm{MA})$
Стандартный материал кон
Характеристики катушки

Номин. напряж. $\left(\mathrm{U}_{\mathrm{N}}\right)$	$\mathrm{V} \mathrm{AC/DC}$
	V AC
	V DC
Ном. мощн. AC/DC	$\mathrm{BA}(50$ Гц)/Bт
Рабочий диапазон	$\mathrm{AC} / \mathrm{DC}$
	AC
Напряжение удержания	DC
Напряжение отключения	$\mathrm{AC} / \mathrm{DC}$

Технические параметры
Механическая долговечность AC/DC циклов
Электр. договечность при ном. нагрузке АС1 циклов
Время вкл/выкл
Изоляция между катушкой и контактами $(1.2 / 50 \mu \mathrm{~s}) \mathrm{kB}$
Эгектриесканпрочностьмеждуоткрьпьммконтактам VAC
Внешний температурный диапазон ($\mathrm{U}_{\mathrm{N}} \leq 60 \mathrm{~V} />60 \mathrm{~V}$) ${ }^{\circ} \mathrm{C}$
Категория защиты

Сертификация (в соответствии с типом)
38.51/61

1-полюсное электромеханическое реле
Винтовые и зажимные варианты клемм Установка на 35-мм рейку (EN 60715)
38.51.3 / 38.61.3

Подавление тока утечки 1-полюсное электромеханическое реле Винтовые и зажимные варианты клемм Установка на 35-мм рейку (EN 60715)

перекидной контакт (SPDT)

$6 / 10$
$250 / 400$
1,500
300
0.185
$6 / 0.2 / 0.12$
$500(12 / 10)$
AgNi

12-24-48-60-(110...125)-(220...240)
(230...240)*

6-12-24-48-60 (неполяризованное)
См. таблицу, стр. 9
(0.8...1.1) U_{N}
$(184 \ldots 264) \mathrm{V}$
$(0.8 \ldots 1.2) \mathrm{U}_{\mathrm{N}}$
$0.6 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$
$0.1 \mathrm{U}_{\mathrm{N}} / 0.05 \mathrm{U}_{\mathrm{N}}$
$10 \cdot 10^{6}$
$60 \cdot 10^{3}$
MC

B

38 серия - Интерфейсные модули реле - SSR, 1-полюсные

Характеристики

Интерфейсные модули твердотельных реле с одним выводом, ширина 6.2 мм Идеальный интерфейс для ПЛК и электронных систем

- Варианты ввода: DC, AC или AC/DC

Поставляется с встроенной схемой индикации и защиты входного контура Бесшумное скоростное переключение, большая долговечность
Мгновенное извлечение реле с помощью пластикового зажима
Сертифицировано UL
Установка на 35-мм рейку (EN 60715)

См. чертеж на стр. 12

Выходная цепь

Контактная группа (конффигурация)

Номинальный ток/ Макс. пиковый ток (10 мс) А	2/20	0.1/0.5	2/40	2/20	0.1/0.5	2/40
Нам. напряжение/Макс. блокирующее напряжение В	24/33 DC	48/60 DC	240/275 AC	24/33 DC	48/60 DC	240/275 AC
Диапазон напряжений но переключение В	(1.5...24)DC	(1.5...48)DC	(12...240)AC	(1.5...24)DC	(1.5...48)DC	(12...240)AC
Минимальный ток переключения мA	1	0.05	22	1	0.05	22
Макс. ток утечки в состоянии ВЫКЛ. мА	0.001	0.001	1.5	0.001	0.001	1.5
Макс. падение напряжения в состоянии ВКЛ. В	0.12	1	1.6	0.12	1	1.6
Входная цепь						
V AC	-			230... 240		
Номинальное напряжени (U_{N}) V DC	6-24-60			-		
V AC/DC	(110...125) - (220...240)			110... 125		
Рабочий диопазон V DC	См. таблицу, стр. 10			См. таблицу, стр. 10		
Ток управления MA	См. таблицу, стр. 10			См. таблицу, стр. 10		
Напряжение отключения V DC	См. таблицу, стр. 10			См. таблицу, стр. 10		
Технические параметры						
Время вкл./Выкл (Вход DC) мс	0.2/0.6	0.04/0.11	12/12	0.2/0.6	0.04/0.11	12/12
Электринескаяпрочность между входом'выходом VAC	2,500			2,500		
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-20...+55			-20...+55		
Категория защиты	IP20			IP20		
Сертификация (в соответствии с типом)	$\mathbf{C E} \text { (1) PG (H) RINA } c \boldsymbol{N}_{u S}^{\circ}$					

Характеристики

Тонкие интерфейсные модули (ширино - 6.2 мм) со встроенным многофункциональным таймером
1-полюсное злектромеханическое реле, 6А 1 выход, 2A DC или AC - твердотельное реле
Электромеханическое или твердотельное выходное реле
Многофункциональный таймер
Питание AC/DC
4 шкалы времени от 0.1 с до 6 ч
Мгновенное извлечение реле с помощью пластикового зажима
ширино 6.2 mm , Установка на 35-мм рейку (EN 60715)

38.21

Винтовой зажим

См. чертеж на стр. 12

Характеристика контактов

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток
Ном. напрнжение/Макс. напряжение
Номинальная нагрузка AC1 BA
Отключающая способность DC1: 30/110/220 B A
Минимальный ток переключения мВт(В/мA)
Стандартный материал контакта
Характеристика выхода
Конфигурация выхода
Номинальный ток/Макс. пиковый ток
Ном. напряж/Макс. бпокирующее напряж. В
Диапазон напряжений на перекпючение B
Минимальный ток переключения мА

Макс. ток утечки в состоянии ВЫКЛ. мА
Макс. падение напрнжения в состоянии ВКЛ. В
Характеристика
Номин. напряж. $\left(\mathrm{U}_{\mathrm{N}}\right) \quad$ V AC $(50 / 60 \mathrm{~Hz}) / \mathrm{DC}$

Номинальная мощность	$\mathrm{BA} / \mathrm{BT}$
Рабочий диапазон	AC

Технические параметры

Временные диапазоны
Способность повторения \%
Время перекрытия мС
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$
Категория защиты

Сертификация (в соответствии с типом)
A

38.21

1-полюсное электромеханическое реле Питание 12 или 24 V AC/DC
Винтовой зажим
Установка на 35-мм рейку (EN 60715)
AI: Задержка включения
DI: ИНтервал
GI:
(Ммпульсы с задержкой
(0.5 s)
-
$250 / 400$
1,500

$6 / 0.2 / 0.12$
$500(12 / 10)$

AgNi

AgNi	
	-
	-
	-
	-
$12-24$	
0.5	
$(0.8 . .1 .1) \mathrm{U}_{\mathrm{N}}$	
$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	

DC выход (...9024)	AС выход (...8240)
1 HO (SPST-NO)	1 HO (SPST-NO)
2/20	2/40
(24/33)DC	(240/275)AC
(1.5...24)DC	(12...240)AC
1	22
0.001	1.5
0.12	1.6
24	
0.5	
$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	
(0.8...1.1) U_{N}	

(0.1...3)с, (3...60)с, (1...20) мин, (0.3...6) ч

Характеристики

Интерфейсные модули с электромеханическим реле, ширина 14 мм.
38.01 и 38.11 - 1-полюсные, 16 А 38.52 и 38.62 - 2-полюсные, 8 А

Идеальный интерфейс для ПЛК и электронных систем

Исполнение с чувствительной катушкой DC или катушкой $\mathrm{AC} / \mathrm{DC}$
Встроенная схема индикации и защиты катушки
Мгновенное извлечение реле с помощью пластикового зажима
Сертифицировано UL
Установка на 35-мм рейку (EN 60715)

См. чертеж на стр. 12

Характеристика контактов

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение B~
Номинальная нагрузка AC1 BA

Номинальная нагрузка (230 B~) AC15 BA
Отключающая способность DC1: 30/110/220 B A
Минимальный ток перекпючения $\mathrm{mBt}(\mathrm{B} / \mathrm{MA})$
Стандартный материал контакта

Характеристики катушки

Номин. напряж. $\left(\mathrm{U}_{\mathrm{N}}\right) \quad \mathrm{VAC/DC}$

Ном. мощн. AC/DC $\quad \mathrm{BA}(50$ Гц)/Вт	См. таблицу, стр. 9	См. таблицу, стр. 9
Рабочий диапазон AC/DC	0.8...1.1	0.8...1.1
DC	$(0.8 \ldots 1.2) \mathrm{U}_{\mathrm{N}}$	$(0.8 \ldots 1.2) \mathrm{U}_{\mathrm{N}}$
Напряжение удержания AC/DC	$0.6 / 0.6 \mathrm{U}_{\mathrm{N}}$	$0.6 / 0.6 \mathrm{U}_{\mathrm{N}}$
Напряжение отключения AC/DC	$0.1 / 0.05 U_{N}$	$0.1 / 0.05 \mathrm{U}_{\mathrm{N}}$
Технические параметры		
Механическая долговечность AC/DC циклов	$30 \cdot 10^{6}$	$30 \cdot 10^{6}$
Электр. договечность при ном. нагрузке АС1 циклов	$70 \cdot 10^{3}$	$80 \cdot 10^{3}$
Время вкл/выкл м \quad м	$8 / 10$	$8 / 10$
Изоляция между катушкой и контактами (1.250 $\mu \mathrm{s}$) kB	6 (8 mm)	6 (8 mm)
Электринскаяпроностьмеждуотрытымиконтактам VAC	1,000	1,000
Внешний температурный диапазон ($\mathrm{U}_{N} \leq 60 \mathrm{~V} />60 \mathrm{~V}$) ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70 /-40 \ldots+55$	$-40 \ldots+70 /-40 \ldots+55$
Категория защиты	IP 20	IP 20
Сертификация (в соответствии с типом)	CE (1) PG) RINA c ${ }^{+1}$	

38 серия - Интерфейсные модули реле - SSR, 1-полюсные

Характеристики

Интерфейсные модули с твердотельным реле, 1-полюсные, ширина 14 мм Идеальный интерфейс для ПЛК и электронных систем

- Варианты ввода - DC
- Встроенная схема индикации и защиты входного контура
- Бесшумное скоростное переключение, большая долговечность
Мгновенное извлечение реле с помощью пластикового зажима
Сертифицировано UL
Установка на 35-мм рейку (EN 60715)

Информация по заказам

Электромеханическое реле - 1 или 2 полюса

Пример: Интерфейсный модуль реле 38 серии, 1 перекидной контакт (SPDT), напрнжение катушки 12 V DC.
 с безрезьбовой клеммой
Кол-во контактов
$1=1$ полюс, 6 или 16 A
$2=2$ полюса, 8 А

Тип катушки

$0=$ AC (50/60 Гц)/ DC
3 = Подавление тока утечки

$$
(110 \ldots 125) \mathrm{V} \text { AC/DC }-(230 \ldots 240) \mathrm{V} \text { AC }
$$

$7=$ Чувствительн DC , только для $(6,12,24,48,60) \mathrm{V}$ 8 = AC (50/60 Hz)
Напряжение катушки
См. характеристики катушки

Выбор характеристик и опций: возможны комбинации только в одном ряду.

Тип	Питание катушки	A	B	C	D
$38.01 / 11$	7	$0-4$	0	5	0
$38.01 / 11$	$0-8$	$0-4$	0	6	0
$38.51 / 61$	7	$0-4-5$	0	5	0
$38.51 / 61$	$0-3-8$	$0-4-5$	0	6	0
$38.52 / 62$	7	$0-5$	0	5	0
$38.52 / 62$	$0-8$	$0-5$	0	6	0
38.21	0	0	0	6	0

Информация по заказам

Твердотельное реле, 1 -полюсные, ширина 6.2 и 14 мм

Пример: Интерфейсный модуль с твердотельным реле 38 серии, питание $2 \mathrm{~A}, 24 \mathrm{~V}$ DC.
Серия
Тип
$21=$ Твердотельное реле с таймером, ширина 6.2 мм, с резьбовой клеммой
$31=$ Твердотельное реле, ширина 14 мм, с резьбовой клеммой

41 = Твердотельное реле, ширина 14 мм, с безрезьбовой клеммой
81 = Твердотельное реле, ширина 6.2 мм, с резьбовой клеммой
91 = Твердотельное реле, ширина 6.2 мм, с безрезьбовой клеммой

Источник тока

0 = AC/DC
3 = Подавление тока утечки
(110...125) V AC/DC и (230...240)V AC, только SSR
$7=\mathrm{DC}$, только для $(6,24,60) \mathrm{V}$ SSR

Напряжение сети
См. входные параметры

Выбор характеристик и опций: возможны комбинации только в одном ряду.

Тип	Варианты входов	Варианты выходов
$38.81 / 91$	7	$9024-7048-8240$
$38.81 / 91$	$0-3$	$9024-7048-8240$
$38.31 / 41$	$0-7$	$9024-8240$
38.21	0	$9024-8240$

Технические параметры - Электромеханическое реле, 1- и 2-полюсные

Изоляция					
Изоляция в соответствии с EN 61810-1	Номинальное напряжение изоляции В	250		400	
	Номинальное напряжение пробоя кВ	4		4	
	Уровень загрязнения	3		2	
	Категория перегрузки	III		III	
Изоляция между катушкой и контактами (1.2/50 мкс) кB		6 (8 мм)			
Электрическая прочность между открытыми контактами V ACУстойчивость к перепадам		1,000			
Разрыв (5...50) нс, 5 кГц, на А 1 -А2		EN 61000-4-4		уровень 4 (4 kB)	
Импульс (1.2/50 мкс) на А 1 -А2 (при дифференциальном включении)		EN 61000-4-5		уровень 3 (2 kB)	
Прочее		1 полюс 6 A		1 полюс 16 A-2 полюса 8 A	
Время дребезга: НО/Н3 мc		1/6		$2 / 5$	
Виброустойчивость (10...55)Гц: НО/Н3 g		10/5		15/2	
Потери мощнасти	без нагрузки Вт	0.2 (12 B) - 0.9 (240 B)		0.5 (24 B) - 0.9 (240 B)	
	при номинальном токе Вт	0.5 (12 B) - 1.5 (240 B)		1.3 (24 B) - 1.7 (240 B)	
Клеммы		38.21/38.51		38.61	
Длина зачистки провода мM		10		10	
Ө Момент завинчивания	Нм	0.5		-	
Макс. размер провода		$\begin{aligned} & \text { одножильный } \\ & \text { провод } \end{aligned}$	многожильный провод	одножильный провод	многожильный провод
	MM ${ }^{2}$	1×2.5/2x1.5	1x2.5/2x1.5	1x2.5	1×2.5
	AWG	$1 \times 14 / 2 \times 16$ $1 \times 14 / 2 \times 16$ $38.01 / 38.52$		1×14 1×14	
				38.11 / 38.62	
Длина зачистки провада	MM	10		10	
Ө Момент завинчивания	Нм	0.5		-	
Макс. размер провода		одножильный провод	Многожильный провод	одножильный провод	многожильный провод
	MM ${ }^{2}$	1x2.5/2x1.5	1x2.5/2x1.5	1x2.5	1x2.5
	AWG	1x14/2x16	1x14/2x16	1x14	1×14

Характеристика контактов - 1 и 2 полюса Электромеханическое реле

F 38 - Электрическая долговечность (AC) при ном. нагрузке, H 38 - Макс. отключающая способность DC1, 1 полюс 6 A
1 полюс 6 A

F 38 - Электрическая долговечность (AC) при ном. нагрузке, 1 полюс 16 A и 2 полюса 8 A

———:2 полюса 8 A
--------- : 1 полюс 16 A

Н 38 - Макс. отключающая способность DC1, 1 полюс 16 A и 2 полюса 8 A

- При коммутации резистивных нагрузок (DC1), имеющих напрнжение и ток ниже значений на графике, может быть достигнута Электрическая долговечность $\geq 60 \cdot 10^{3}$ (1-полюс.) или $\geq 80 \cdot 10^{3}$ (2-полюс.).
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1. Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики катушки - Электромеханическое реле, 1-полюсное, 6 А

Параметры чувств. катушки DC, 1 полюс

Номин. напряж. U_{N}	Код катушки	Рабочий $\mathrm{U}_{\text {min }}$	апазон $\mathrm{U}_{\max }$	Погпощающ. способность I при U_{N}	Потребп. мощность Р при U_{N}
B		B	B	MA	Вт
6	7.006	4.8	7.2	35	0.2
12	7.012	9.6	14.4	15.2	0.2
24	7.024	19.2	28.8	10.4	0.3
48	7.048	38.4	57.6	6.3	0.3
60	7.060	48	72	7	0.4

Параметры катушки AC/DC, 1 полюс

Номин. напряж. U_{N}	Код катушки	Рабочий $U_{\text {min }}$	апазон	Потощающ. способность I при U_{N}	Потребп. мощность Р при U_{N}
B		B	B	MA	BA/Bт
12	0.012	9.6	13.2	16	0.2/0.2
24	0.024	19.2	26.4	12	0.3/0.2
48	0.048	38.4	52.8	6.9	0.3/0.3
60	0.060	48	66	7	0.5/0.5
110... 125	0.125	88	138	5(*)	0.6/0.6 (*)
220... 240	0.240	176	264	4(*)	1/0.9(*)

(*) Значения номинальной поглощающей способности катушки и потребляемой мощности относятся к $\mathrm{U}_{\mathrm{N}}=125$ и 240 B .

Параметры катушки АС, 1 полюс (применимы для окружающей температуры макс. $+70^{\circ} \mathrm{C}$)

Номинальное напряжение U_{N}	Код катушки	Рабочий диапазон		Погпощающ. способность I при U_{N}	Потребп. мощность P при U_{N}
B		B	B	MA	BA/Bт
(230...240) AC	8.240	184	264	3	0.7/0.3

Параметры катушки с подавлением тока утечки, 1 полюс

Номинальное напряжение	Код катушки	Рабочий диапазон			Погпощающ. способность
U_{N}					

(*) Значения номинальной поглощающей способности катушки и потребляемой мощности относятся к $\mathrm{U}_{\mathrm{N}}=125$ и 240 B .

Интерфейсные модули 38 серии (версия питания 3) оснащены встроенной схемой подавления утечки тока. Модули используются для промышленных приложений в схемах, где контакты не размыкаются, если в цепи сохраняется остаточный ток (110...125)В АС или (230...240)B AC.

Такая проблема возникает, например, при подключении интерфейсных модулей к ПЛК с симисторными выходами или при подключении оборудования по достаточно длинным кабелям.

Характеристики катушки - Электромеханическое реле 1-полюсное 16 А и 2-полюсное 8 A

Параметры чувств. катушки DC, 1 полюс 16 А и 2 полюса 8 A

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Погпощающ способность	Потребп. мощность
B					

Параметры катушки AC/DC, 1 полюс 16 А и 2 полюса 8 A

Номин. напряж. U_{N}	Код катушки	Рабочи $U_{\text {min }}$	апазон $U_{\text {max }}$	Погпощающ способность I при U_{N}	Потребп. мощность P при U_{N}
B		B	B	MA	ВА/Вт
24	0.024	19.2	26.4	20	0.5/0.5
60	0.060	48	66	7.1	0.5/0.5
110... 125	0.125	88	138	4.6	0.6/0.6
220... 240	0.240	184	264	3.8	0.9/0.9

Параметры катушки АС, 1 полюс 16 А и 2 полюса 8 A

\begin{tabular}{|c|c|c|c|c|c|}
\hline Номин. напряж. U_{N} \& Код катушки \& Рабоч

$U_{\text {min }}$ \& Uпазон
$\mathrm{m}_{\text {max }}$ \& Погпощающ. способность I при U_{N} \& Потребп. мощность P при U_{N}

\hline B \& \& B \& B \& MA \& В ${ }^{\text {A/B }}$ т

\hline 230... 240 \& 8.230 \& 184 \& 264 \& 5.3 \& 1.2/0.6

\hline
\end{tabular}

Характеристики катушки - Электромеханическое реле 1-полюсное и 2-полюсно

R 38 - Отношение рабочего диапазона для DC к температуре
окр. среды, 1 полюс и 2 полюса

1 - Макс. допустимое напряжение на катушке при номинальной нагрузке (катушка DC).
2 - Макс. допустимое напряжение на катушке при номинальной нагрузке (катушки AC/DC - U $\leq 60 \mathrm{~V}$).
3 - Макс. допустимое напряжение на катушке при номинальной нагрузке (катушки AC/DC - U > 60 V).
4 - Мин. считываемое напряжение при температуре окружающей среды.

38 серия - Интерфейсные модули реле - Технические параметры

Технические параметры - твердотельное реле

Прочее		38.81/38.91		38.31/38.41	
Потери мощности	без выходного тока Вт	0.25 (24 V DC)		0.5	
	при номинальном токе Вт	0.4		2.2 (DC выход) / 3 (AC выход)	
Клеммы		38.81		38.91	
Длина зачистки провода	MM	10		10	
\bigcirc Момент завинчивания	Нм	0.5		-	
Макс. размер провода		одножильный провод	многожильный провод	одножильный провод	многожильный провод
	MM ${ }^{2}$	$1 \times 2.5 / 2 \times 1.5$	$1 \times 2.5 / 2 \times 1.5$	1x2.5	1x2.5
	AWG	1x14/2x16	1x14/2x16	1x14	1x14
		38.31		38.41	
Длина зачистки провода	MM	10		10	
\bigcirc Момент завинчивания	Hm	0.5		-	
Макс. размер провода		одножильный провод	многожильный провод	одножильный провод	многожильный провод
	MM ${ }^{2}$	$1 \times 2.5 / 2 \times 1.5$	$1 \times 2.5 / 2 \times 1.5$	1x2.5	1x2.5
	AWG	1x14/2x16	1x14/2x16	1×14	1×14

Входные параметры - твердотельные реле 38.81 и 38.91 -ширина 6.2 мм

Входные данные DC

Номин. напряж. U_{N}	Код питания	Рабочий диапазон		Напряж. отклюЧени U	Ток управления I при U_{N}	Энергопотребление P
B		B	B	B	mA	Вт
6	7.006	5	7.2	2.4	7	0.2
24	7.024	16.8	30	10	10.5	0.3
60	7.060	35.6	72	20	6.5	0.4

Входные данные - типы подавления тока утечки

Номинальное напряжение	$\begin{array}{\|c\|} \hline \text { Код } \\ \text { питания } \end{array}$	Рабочий диапазон		Напряж Ток упраотклюЧения вления		Энергопотребление
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	U	I при U_{N}	P при U_{N}
B		B	B		MA	Вт
110... $125 \mathrm{AC} / \mathrm{DC}$	3.125	94	138	44	8(*)	1/1(*)
230... 240 AC	3.240	184	264	72	6.5(*)	1.6/0.6(*)

(*) Значения номинальной поглощающей способности катушки и Энергопотребления относятся к $\mathrm{U}_{\mathrm{N}}=125$ и 240 В.

Входные данные AC/DC

Номин. напряж. U_{N}	Код питания	Рабочий диапазон		Напряж. ОТКЛЮЧЕНИЯ U	Ток управления I при U_{N}	Энергопотребление P
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$			
B		B	B	B	MA	BA/Bт
110... 125	0.125	88	138	22	5.5*	0.7/0.7
220... 240	0.240	184	264	44	3.5*	1/0.9

(*) Значения номинальной поглощающей способности катушки и Энергопотребления относятся к $\mathrm{U}_{\mathrm{N}}=125$ и 240 В.

Интерфейсные модули 38 серии (версия питания 3) оснащены встроенной схемой подавления утечки тока.
Модули используются для промышленных приложений в схемах, где контакты не размыкаются, если в цепи сохраняется остаточный ток (110...125)В АС или (230...240)В АС.
Такая проблема возникает, например, при подключении интерфейсных модулей к ПЛК с симисторными выходами или при подключении оборудования по достаточно длинным кабелям.

Входные параметры - твердотельные реле 38.31 и 38.41 -ширина 14 мм

Входные данные DC

Номин. напряж. U_{N}	Код питания	Рабочий диапазон		Напряж. отКПЮЧЧНй U	Tок управления I при U_{N}	Энергопо требление P
B		B	B	B	mA	Bт
12	7.012	9.6	18	5	9	0.2
24	7.024	16.8	30	5	12	0.3

Входные данные AC/DC

Номин. напряж. U_{N}	$\begin{array}{c\|} \text { Код } \\ \text { питания } \end{array}$	Рабочий диапазон		Напряж.	Ток упра-	Энергопо-
				отклюЧения	вления	требление
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	U	I при U_{N}	P
B		B	B	B	mA	Bт
24	0.024	16.8	30	9	16.5	0.3

Технические параметры - Интерфейсные модули с таймером
Характеристики электромагнитной совместимости

Тип теста			Базовый стандарт	
Электростатический разряд	контактный разряд		EN 61000-4-2	4 kB
	воздушный раз		EN 61000-4-2	8 kB
Электромагнитное поле РЧ.диапазона (80 $\div 1000$ МГц)			EN 61000-4-3	$10 \mathrm{~B} / \mathrm{M}$
Быстрый переходный режим (разрыв) (5-50 нс, 5 кГц) на клеммах литания			EN 61000-4-4	4 kB
Импульсы (1.2/50 мкс) на клеммах питания	общий режим		EN 61000-4-5	4 kB
	дифференциаль	режим	EN 61000-4-5	4 kB
Общий режим для РЧ-диалазана ($0.15 \div 80$ МГц) на клеммах питания			EN 61000-4-6	10 B
Радиационное и кондуктивное излучение			EN 55022	класс В
Прочее			EMR	SSR
Ток абсорбции управляющего сигнала (B1)	без нагрузки	Вт	0.1	0.1
	при ном. токе	Вт	0.6	0.5
Клеммы			38.21	
Длина зачистки кабеля		MM	10	
(ff) Момент завинчивания		Нм	0.5	
Макс. размер провода			одножильный провод	многожильный провод
		MM ${ }^{2}$	1×2.5 / 2x1.5	1x2.5 / 2x1.5
		AWG	1x14/2x16	1x14/2x16

Временные шкалы

(0.1...3)s

(3...60)s

(1...20)min

(0.3...6)h

функции

СВЕТОДИОД	Напряжение питания	НО выходной контакт
	Выкл.	Открыт
	Вкл.	Открыт (идет отсчет времени)
	Вкл.	Закрыт

Схема эл. соединений $\quad \mathrm{U}=$ Напряжение питания \quad = Выходной контакт

(AI) Задержка включения.
Питание подается на таймер. Контакт замыкается по прошествии времени предустановки. Сброс происходит при выключении питания.
(DI) Интервал.

Питание подается на таймер.
Контакт замыкается немедленно.
По прошествии предустановленного времени контакт возвращается в исходное положение.
(GI) Импульсы с задержкой (0.5 s).
Питание подается на таймер. Контакт замыкается по прошествии времени предустановки. Сброс происходит по истечении фикс. промежутка времени 0.5 с.
(SW) Симметричный повтор цикла (начальный импульс Вкл.).
Питание подается на таймер. Выходные контакты срабатывают немедленно и переключаются между положениями вкл. и выкл. до тех пор, пока подается питание. Соотношение 1: 1 (время во вкл. состоянии = времени в выкл. состоянии).
38.21
38.51 / 38.51.3
38.81 / 38.81.3

Винтовой зажим

38.01
38.31
38.52

Винтовой зажим

38.11
38.41
38.62

Пружинный зажим

93 серия - Розетки и аксессуары для реле 38 Серии

Комбинации для электромеханических реле

Винтовой зажим - 1-полюсное реле 6 A
Код интерфейсных модулей
Напряжение питания

38.51.0.012.0060	$12 \mathrm{~V} \mathrm{AC/DC}$
38.51.0.024.0060	24 V AC/DC
38.51.0.048.0060	48 V AC/DC
38.51.0.060.0060	60 V AC/DC
38.51.0.125.0060	(110...125)V AC/DC
38.51.0.240.0060	(220...240)V AC/DC
38.51.3.125.0060	(110...125)V AC/DC
38.51.3.240.0060	(230...240)V AC
38.51.7.006.0050	6 V DC
38.51.7.012.0050	12 V DC
38.51.7.024.0050	24 V DC
38.51.7.048.0050	48 V DC
38.51.7.060.0050	60 V DC
38.51.8.240.0060	(230...240)V AC

Тип репе	Т
34.51 .7 .012 .0010	93.0
34.51 .7 .024 .0010	93.0
34.51 .7 .048 .0010	99.0
34.51 .7 .060 .0010	93.0
34.51 .7 .060 .0010	9
34.51 .7 .060 .0010	93.0
34.51 .7 .060 .0010	9
34.51 .7 .060 .0010	93.0
34.51 .7 .005 .0010	9
34.51 .7 .012 .0010	93.0
34.51 .7 .024 .0010	93.0
34.51 .7 .048 .0010	93.0
34.51 .7 .060 .0010	93.0
34.51 .7 .060 .0010	93.0

Тип розетки
93.01.0.024
93.01.0.024
93.01.0.060
93.01.0.060
93.01.0.125
93.01.0.240
93.01.3.125
93.01.3.240
93.01.7.024
93.01.7.024
93.01.7.024
93.01.7.060
93.01.7.060
93.01.8.240

Пружинный зажим - 1-полюсное реле 6 А

Код интерфейсных модулей	Напряжение питания	Тип репе	Тип розетки
38.61 .0 .012 .0060	$12 \mathrm{~V} \mathrm{AC/DC}$	34.51 .7 .012 .0010	93.51 .0 .024
38.61 .0 .024 .0060	$24 \mathrm{~V} \mathrm{AC/DC}$	34.51 .7 .024 .0010	93.51 .0 .024
38.61 .0 .125 .0060	$(110 . .125) \mathrm{V} \mathrm{AC/DC}$	34.51 .7 .060 .0010	93.51 .0 .125
38.61 .0 .240 .0060	$(220 . .240) \mathrm{V} \mathrm{AC/DC}$	34.51 .7 .060 .0010	93.51 .0 .240
38.61 .3 .125 .0060	$(110 . .125) \mathrm{V} \mathrm{AC/DC}$	34.51 .7 .060 .0010	93.51 .3 .125
38.61 .3 .240 .0060	$(230 . .240) \mathrm{V} \mathrm{AC}$	34.51 .7 .060 .0010	93.51 .3 .240
38.61 .7 .012 .0050	12 V DC	34.51 .7 .012 .0010	93.51 .7 .024
38.61 .7 .024 .0050	24 V DC	34.51 .7 .024 .0010	93.51 .7 .024
38.61 .8 .240 .0060	$(230 . .240) \mathrm{V} \mathrm{AC}$	34.51 .7 .060 .0010	93.51 .8 .240

Винтовой зажим - 1-полюсное реле 16 A

Код интерфейсных модулей	Напряжение питания	Тип репе	Тип розетки
38.01 .7 .012 .0050	12 V DC	41.61 .9 .012 .0010	93.02 .7 .024
38.01 .7 .024 .0050	24 V DC	41.61 .9 .024 .0010	93.02 .7 .024
38.01 .7 .060 .0050	60 V DC	41.61 .9 .060 .0010	93.02 .7 .060
38.01 .0 .024 .0060	$24 \mathrm{~V} \mathrm{AC/DC}$	41.61 .9 .024 .0010	93.02 .0 .024
38.01 .0 .060 .0060	$60 \mathrm{~V} \mathrm{AC/DC}$	41.61 .9 .060 .0010	93.02 .0 .060
38.01 .0 .125 .0060	$125 \mathrm{~V} \mathrm{AC/DC}$	41.61 .9 .110 .0010	93.02 .0 .125
38.01 .0 .240 .0060	$240 \mathrm{~V} \mathrm{AC/DC}$	41.61 .9 .110 .0010	93.02 .0 .240
38.01 .8 .230 .0060	230 V AC	41.61 .9 .110 .0010	93.02 .8 .230

Пружинный зажим - 1-полюсное реле 16 A

Код интерфейсных модулей	Напряжение питания	Тип репе	Тип розетки
38.11 .7 .012 .0050	12 V DC	41.61 .9 .012 .0010	93.52 .7 .024
38.11 .7 .024 .0050	24 V DC	41.61 .9 .024 .0010	93.52 .7 .024
38.11 .7 .060 .0050	60 V DC	41.61 .9 .060 .0010	93.52 .7 .060
38.11 .0 .024 .0060	$24 \mathrm{~V} \mathrm{AC/DC}$	41.61 .9 .024 .0010	93.52 .0 .024
38.11 .0 .060 .0060	$60 \mathrm{~V} \mathrm{AC/DC}$	41.61 .9 .060 .0010	93.52 .0 .060
38.11 .0 .125 .0060	$125 \mathrm{~V} \mathrm{AC/DC}$	41.61 .9 .110 .0010	93.52 .0 .125
38.11 .0 .240 .0060	$240 \mathrm{~V} \mathrm{AC/DC}$	41.61 .9 .110 .0010	93.52 .0 .240
38.11 .8 .230 .0060	230 V AC	41.61 .9 .110 .0010	93.52 .8 .230

спецификации: Определенные комбинации реле/розеток

Винтовой зажим - 2-полюсное реле 8 A

Код интерфейсных модулей	Напряжение питания	Тип репе	Т
38.52 .0 .024 .0060	24 V AC/DC	41.52 .9 .024 .0010	9
38.52 .0 .060 .0060	60 V AC/DC	41.52 .9 .060 .0010	93.0
38.52 .0 .125 .0060	$(110 \ldots 125)$ V AC/DC	41.52 .9 .110 .0010	93.0
38.52 .0 .240 .0060	$(220 \ldots 240)$ V AC/DC	41.52 .9 .110 .0010	93.0
38.52 .7 .012 .0050	12 V DC	41.52 .9 .012 .0010	93.0
38.52 .7 .024 .0050	24 V DC	41.52 .9 .024 .0010	93.0
38.52 .7 .060 .0050	60 V DC	41.52 .9 .060 .0010	93.0
38.52 .8 .230 .0060	$(230 \ldots 240) \mathrm{V} \mathrm{AC}$	41.52 .9 .110 .0010	93.0

Пружинный зажим - 2-полюсное реле 8 A

Код интерфейсных модулей	Напряжение питания	Тип репе	Тип розетки
38.62 .0 .024 .0060	$24 \mathrm{~V} \mathrm{AC/DC}$	41.52 .9 .024 .0010	93.52 .0 .024
38.62 .0 .060 .0060	$60 \mathrm{~V} \mathrm{AC/DC}$	41.52 .9 .060 .0010	93.52 .0 .060
38.62 .0 .125 .0060	$(110 \ldots 125) \mathrm{V} \mathrm{AC/DC}$	41.52 .9 .110 .0010	93.52 .0 .125
38.62 .0 .240 .0060	$(220 \ldots 240) \mathrm{V} \mathrm{AC/DC}$	41.52 .9 .110 .0010	93.52 .0 .240
38.62 .7 .012 .0050	12 V DC	41.52 .9 .012 .0010	93.52 .7 .024
38.62 .7 .024 .0050	24 V DC	41.52 .9 .024 .0010	93.52 .7 .024
38.62 .7 .060 .0050	60 V DC	41.52 .9 .060 .0010	93.52 .7 .060
38.62 .8 .230 .0060	$(230 \ldots 240) \mathrm{V} \mathrm{AC}$	41.52 .9 .110 .0010	93.52 .8 .230

Сертификация (В соответствии с типом):

$C \in \mathbb{C l}$
 (H) ${ }^{(2)}{ }^{\circ}$

(41) 1 s

Согласно спецификации: Определенные комбинации реле/розеток

Сертификация (В соответствии с типом)

Комбинации для твердотельного реле - ширина 6.2 mm

Винтовой зажим			
Код интерфейсных модулей	Напряжение питания	Тип репе	Тип розетки
38.81.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.01.7.024
38.81.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.01.7.024
38.81.7.060.xxxx	60 V DC	34.81.7.060.xxxx	93.01.7.060
38.81.0.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.01.0.125
38.81.0.240.xxxx	(220...240)V AC/DC	34.81.7.060.xxxx	93.01.0.240
38.81.3.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.01.3.125
38.81.3.240.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.01.3.240
Пружинный зажим			
Код интерфейсных модулей	Напряжение питания	Тип репе	Тип розетки
38.91.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.51.7.024
38.91.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.51.7.024
38.91.7.060.xxxx	60 V DC	34.81.7.060.xxxx	93.51.7.060
38.91.0.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.51.0.125
38.91.0.240.xxxx	(220...240)V AC/DC	34.81.7.060.xxxx	93.51.0.240
38.91.3.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.51.3.125
38.91.3.240.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.51.3.240

Пример: .xxxx .9024
.7048
.8240

Комбинации для твердотельного реле - ширина 14 mm
Винтовой зажим

Код интерфейсных модулей	Напряжение питания	Тип репе	Тип розетки
38.31.0.024.xxxx	24 V AC/DC	41.81.7.024.xxxx	93.02.0.024
38.31.7.012.xxxx	12 V DC	41.81.7.012.xxxx	93.02.7.024
38.31.7.024.xxxx	24 V DC	41.81.7.024.xxxx	93.02.7.024
Пружинный зажим			
Код интерфейсных модулей	Напряжение питания	Тип репе	Тип розетки
38.41.0.024.xxxx	24 V AC/DC	41.81.7.024.xxxx	93.52.0.024
38.41.7.012.xxxx	12 V DC	41.81.7.012.xxxx	93.52.7.024
38.41.7.024.xxxx	24 V DC	41.81.7.024.xxxx	93.52.7.024

Комбинации электромеханических и твердотельных реле с таймерами

Винтавой зажим			
Код интерфейсных модулей	Напряжение Входного контура / Катушки	Тип репе	Тип розетки
38.21 .0 .012 .0060	$12 \mathrm{~V} \mathrm{AC/DC}$	34.51 .7 .012 .0010	93.21 .0 .024
38.21 .0 .024 .0060	$24 \mathrm{~V} \mathrm{AC/DC}$	34.51 .7 .024 .0010	93.21 .0 .024
38.21 .0 .024 .9024	$24 \mathrm{~V} \mathrm{AC/DC}$	34.81 .7 .024 .9024	93.21 .0 .024
$38.21 .0 .024 . x x x \mathrm{D}$	$24 \mathrm{~V} \mathrm{AC/DC}$	$34.81 .7 .024 . x x \mathrm{xx}$	93.21 .0 .024

Сертификация): (В соответствии с типом):

Аксессуары

Пластиковый разделитель

Толщина 2 мм, необходимо устанавливать в начале и в конце группы интерфейсов.
Может применяться для визуального разделения групп , обязательно следует использовать для:

- защитного разделения интерфейсов соседних ПЛК с различным напряжением согласно требованиям VDE 0106-101
- защиты перемычек

093.64

Блок маркировок для 38.01/11/31/41/52/62, пластик, 72 знака, 6×12 мм

Общие данные

- Экономия места, ширина 6.2 мм
- Подключение с помощью 16-полюсного соединителя
- Встроенная индикация состояния и защитный контур
- Надежная фиксация и быстрое извлече ние с помощью пластикового держателя
- Комбинированная головка винта клемм (шлиц+крест) - Монтаж на рейку 35 мм (EN 60715)

MasterBASIC
Длн применения с системами разных типов

EMR: Катушки от 6 до 24 V AC/DC и 230 V AC
SSR: Питание от 6 до 24 V DC и 230 V AC
MasterPLUS

- Имеется компактный предохранитель,
для простой и эффективной защиты для простой и эффективной защиты выходной цепи

EMR: Катушки от 6 до 125 V AC/DC, 125 и 220 V DC, 230 V AC
SSR: Питание 24-125 V AC/DC, от 6 до 220 V DC и 230 V AC

Специальные типы с подавлением тока утечки 125 и 230 V AC (39.31.3 EMR и 39.30.3 SSR) MasterINPUT

- Опция Jumper link для упрощения распределения электропитания на соседние переключатели и аналогичные входные устройства

EMR: Катушка от 6 до 24 V и 125 V AC/DC, 230 V AC
SSR: Питание 6-12V DC, 24-125 V AC/DC, 230 V AC

MasterBASIC

39.11-39.10

- Для применения в качестве интерфейса с системами разных типов, для различных приложений.
- Могут использоваться в качестве входного интерфейса для доп. контактов, датчиков, PLC или электромоторов.
Либо в качестве выходного интерфейса между PLC-контроллерами и реле, соленоидами и т.п.

MasterPLUS

39.31-39.30-39.31.3-39.30.3

Эта специальная версин обеспечивает дополнительную защиту выходных цепей благодаря компактному заменнемому предохранителю.

- Для применения в качестве интерфейса с системами разных типов, для различных приложений.
- Могут использоваться в качестве входного интерфейса длғ доп. контактов, датчиков, PLC или электромоторов. Либо в качестве выходного интерфейса между PLCконтроллерами и реле, соленоидами и т.п.

MasterINPUT

39.41-39.40

- Эти модули обеспечивают полное подключение входных устройств к интерфейсу, без использования промежуточных клемм. Это обеспечивает экономию электрических компонент, времени монтажа и места в щите автоматики.
Быстрое и простое распределение электропитания с помощью перемычки Jumper link на шине Bus-Bar
Оптимальный интерфейс для приложений, использующих датчики, концевые выключатели и PLC-контроллеры.

MasterOUTPUT

39.21-39.20

Эти модули обеспечивают полное подключение выходных устройств к интерфейсу, без использования промежуточных клемм. Это обеспечивает экономию электрических компонент, времени монтажа и места в щите автоматики.

- Быстрое и простое распределение электропитания с помощью перемычки Jumper link на шине Bus-Bar
Оптимальный интерфейс для приложений, использующих на PLC-контроллеры и выходные устройства, такие как электромагнитные клапаны, электромоторы и т.п.

MasterTIMER

39.81-39.80

Тонкий интерфейсный модуль с многофункциональным таймером

MasterBASIC - EMR

Характеристики

1-полюсный интерфейсный модуль, ширина 6.2 мм, идеально подходит для электронных PLC-систем
Общие точки подключения возможны с помощью дополнительных перемычек (клеммы A1, A2 и 11)

39.11

Винтовой зажим

Электромеханическое реле 6 А Питание от 6 до 24 V AC/DC и 230 V AC Монтаж на рейку 35мм (EN 60715)

См. чертеж на стр. 20

Характеристика контактов	
Контактная группа (конфигурация)	1 перекидной контакт (SPDT)
Номинальный ток/Макс. пиковый ток А	6 / 10
Ном. напряжение/Макс. напряжение В~	250 / 400
Номинальная нагрузка AC1 BA	1,500
Номинальная нагрузка (230 B~) AC15 BA	300
Допуст. мощность одноразного двигателя (230 B-) kBт	0.185
Отключающая способность DC1: 30/110/220 В A	6 / 0.2 / 0.12
Минимальный ток переключения мВт(B/mA)	500 (12 / 10)
Стандартный материал контакта	AgNi
Характеристики входной цепи	
Номинальное V AC/DC	6-12-24
напряжение (U_{N}) VAC (50/60 Гц)	220... 240
Номинальная мощность VA (50 Гц) W	См. характеристики катушки стр. 16
Рабочий диапазон	(0.8..1.1) U_{N}
Напряжение удержания	$0.6 \mathrm{U}_{\mathrm{N}}$
Напряжение отключения	$0.1 \mathrm{U}_{\mathrm{N}}$
Технические параметры	
Механическая долговечность AC/DC циклов	$10 \cdot 10^{6}$
Электр. договечность при ном. нагрузке АС1 циклов	$60 \cdot 10^{3}$
Время вкл/выкл мс	5/6
Изоляция между катушкой и контактами (1.2/50 $\mu \mathrm{s}$) kB	6 (8 mm)
Электринежаяпронюстьмеждуотрьпыми контактами VAC	1,000
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Категория защиты	IP 20
Сертификация (в соответствии с типом)	CE

MasterBASIC - SSR

Характеристики
1-полюсный интерфейсный модуль, ширина $6.2 \mathrm{mм}$, идеально подходит для электронных PLC-систем

- Общие точки подключения возможны с помощью дополнительных перемычек (клеммы A1, А2 и 13+)

39.10

Винтовой зажим

См. чертеж на стр. 20
Выходная цепь (SSR)
Контактная группа (конфигурация)
Номинальный ток/ Макс. пиковый ток (10 мс) А
Нам. напряжение/Макс. блокирующее напряжение В
Диапазон напряжений но переключение В
Минимальный ток переключения мА
Макс. ток утечки в состоянии ВЫККЛ. мА
Макс. падение напряжения в состоянии ВКЛ. В
Характеристики входной цепи

Номинальное	VAC (50/60 Гц)
	V DC
напряжение $\left(\mathrm{U}_{\mathrm{N}}\right)$	

Номинальная мощность VA (50 Гц) / W	См. характеристики входной цепи стр. 17		
Рабочий диопазон	(0.8..1.1) U_{N}		
Напряжение отключения	$0.1 \mathrm{U}_{\mathrm{N}}$		
Технические параметры			
Время вкл/выкл ms	0.2/0.6	0.04/0.11	12/12
Электрическаяпронность между входом'выходом VAC	2,500		
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-20...+55		
Категория защиты	IP20		
Сертификация (в соответствии с типом)	$C E$		

39 серия - Интерфейсные модули реле 0.1-2-6 А

MasterPLUS - EMR

Характеристики

1-полюсный интерфейсный модуль, ширина $6.2 \mathrm{mм}$, идеально подходит для электронных PLC-систем

- Имеется дополнительный контейнер с предохранителем 093.63 (для предохранителей 5×20 мм) для защиты выходных цепей, см.стр. 22
Общие точки подключения возможны с помощью дополнительных перемычек (клеммы A1, A2 и 13+)
39.31 / 39.31 .3

Винтовой зажим

См. чертеж на стр. 20

Характеристика контактов		
Контактная группа (конфигурация)	1 перекидной контакт (SPDT)	1 перекидной контакт (SPDT)
Номинальный ток/Макс. пиковый ток А	6 / 10	6 / 10
Ном. напряжение/Макс. напряжение B~	250 / 400	250 / 400
Номинальная нагрузка AC1 BA	1,500	1,500
Номинальная нагрузка (230 B~) AC15 BA	300	300
Догуст. мощность однофазного двигателя (230 B) kBт	0.185	0.185
Отключающая способность DC1: 30/110/220 В A	$6 / 0.2 / 0.12$	6 / 0.2 / 0.12
Минимальный ток переключения мВт(B/mA)	500 (12 / 10)	500 (12 / 10)
Стандартный материал контакта	AgNi	AgNi
Характеристики входной цепи		
Номинальное VAC/DC	6-12-24-60-110... 125	-
напряжение $\left(\mathrm{U}_{\mathrm{N}}\right) \quad \mathrm{VAC}(50 / 60$ Гц)	220... 240	110...125-220... 240
V DC	110...125-220	-
Номинальная мощность VA (50 Гц)/W	См. характеристики катушки стр. 16	См. характеристики катушки стр. 16
Рабочий диапазон	(0.8...1.1) U_{N}	(0.8..1.1) U_{N}
Напряжение удержания	$0.6 \mathrm{U}_{\mathrm{N}}$	$0.6 \mathrm{U}_{\mathrm{N}}$
Напряжение отключения	$0.1 \mathrm{U}_{\mathrm{N}}$	$0.3 \mathrm{U}_{\mathrm{N}}$
Технические параметры		
Механическая долговечность AC/DC циклов	$10 \cdot 10^{6}$	$10 \cdot 10^{6}$
Электр. договечность при ном. нагрузке АС1 циклов	$60 \cdot 10^{3}$	$60 \cdot 10^{3}$
Время вкл/выкл мс	$5 / 6$	$5 / 6$
Изоляция между катушкой и контактами $(1.250 \mu \mathrm{~s}) \mathrm{kB}$	6 (8 mm)	6 (8 mm)
Электринсканпроннстьмеждуотрьтьмиконтактами VAC	1,000	1,000
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-40...+70 (+55 for 220 V DC)	-40...+70
Категория защиты	IP20	IP20
Сертификация (в соответствии с типом)	$C E$	

Электромеханическое реле 6 A Питание от 6 до 125 V AC/DC, 125 и 220 V DC, 230 V AC Монтаж на рейку 35мм (EN 60715)

Электромеханическое реле 6 А Версия с подавлением утечки тока, питание 125 и 230 V AC

Характеристика контактов
Контактная группа (конфигурация)
Ном. напряжение/Макс. напряжение
Номинальная нагрузка AC1
Номинальная нагрузка (230 B~) AC15
Допуст. мощность однофазного двигателя (230 B $) ~ \mathrm{kBT}$

Минимальный ток переключения мВт $(\mathrm{B} / \mathrm{MA})$

Номинальное
напряжение (U_{N})

Номинальная мощность VA (50 Гц)/W

39 серия - Интерфейсные модули реле 0.1-2-6 А

MasterPLUS - SSR

Характеристики

1-полюсный интерфейсный модуль, ширина $6.2 \mathrm{mм}$, идеально подходит для электронных PLC-систем

- Имеется дополнительный контейнер с предохранителем 093.63 (для предохранителей 5×20 мм) для защиты выходных цепей, см.стр. 22
Общие точки подключения возможны с помощью дополнительных перемычек (клеммы A1, A2 и 13+)
$39.30 / 39.30 .3$
Винтовой зажим
Винтовой зажим

полупроводниковое реле 0.1 или 2 A Питание $24-125 \mathrm{VAC} / \mathrm{DC}, 6$ до 220 V DC и 230 V AC

- Монтаж на рейку 35мм (EN 60715)

полупроводниковое реле 0.1 или 2 A Версия с подавлением утечки тока, питание 125 и 230 V AC

См. чертеж на стр. 20
Выходная цепь (SSR)
Контактная группа (конфигурация)
Номинальный ток/ Макс. пиковый ток (10 мс) A
Нам. напряжение/Макс. блокирующее напряжение В
Диапазон напряжений но переключение В
Минимальный ток переключения
Макс. ток утечки в состоянии ВЫКЛ.
Макс. падение напряженин в состоянии ВКЛ. В
Характеристики входной цепи
Номинальное
напряжение (U_{N})

Номинальная мощность VA (50 Гц) / W

MasterINPUT - EMR

Характеристики

1-полюсный интерфейсный модуль, ширина 6.2 мм, идеально подходит для электронных PLC-систем

- Опция Jumper link для простого распределения электропитания на дополнительные переключатели и аналогичные входные устройства (распределительнан шина Bus-bar)
Стандартная версия - контакты с золотым покрытием для коммутации сигналов малой мощности

Электромеханическое реле 6 A
Питание 6-12-24-125 V AC/DC и 230 VAC Монтаж на рейку 35мм (EN 60715)

Винтовой зажим

См. чертеж на стр. 20

Характеристика контактов	
Контактная группа (конфигурация)	1 перекидной контакт (SPDT)
Номинальный ток/Макс. пиковый ток А	6 / 10
Ном. напряжение/Макс. напряжение В~	250 / 400
Номинальная нагрузка AC1 BA	1,500
Номинальная нагрузка (230 B~) AC15 BA	300
Допуст. мощность одноразного двигателя (230 B-) kBт	0.185
Отключающая способность DC1: 30/110/220 B A	6 / 0.2 / 0.12
Минимальный ток переключения мВт(B/мA)	50 (5/2)
Стандартный материал контакта	$\mathrm{AgNi}+\mathrm{Au}$
Характеристики входной цепи	
Номинальное VAC/DC	6-12-24-110... 125
напряжение (U_{N}) V ${ }^{\text {(}}$ (50/60 Гц)	220... 240
Номинальная мощность VA (50 Гц) W	См. характеристики катушки стр. 16
Рабочий диапазон	(0.8..1.1) U_{N}
Напряжение удержания	$0.6 U_{N}$
Напряжение отключения	$0.1 \mathrm{U}_{\mathrm{N}}$
Технические параметры	
Механическая долговечность AC/DC циклов	$10 \cdot 10^{6}$
Электр. договечность при ном. нагрузке АС1 циклов	$60 \cdot 10^{3}$
Время вкл/выкл мс	$5 / 6$
Изоляция между катушкой и контактами (1.250 $\mu \mathrm{s}$) kB	6 (8 mm)
Электрмескаппронностьмеждуоткрьпыми конпактами VAC	1,000
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-40...+70
Категория защиты	IP20
Сертификация (в соответствии с типом)	CE

39 серия - Интерфейсные модули реле 0.1-2-6 А

MasterINPUT - SSR

Характеристики

1-полюсный интерфейсный модуль, ширина $6.2 \mathrm{mм}$, идеально подходит для электронных PLC-систем

- Опция Jumper link для простого распределения электропитания на дополнительные переключатели и аналогичные входные устройства (распределительная шина Bus-bar)

39.40

Винтовой зажим

См. чертеж на стр. 20
Выходная цепь (SSR)
Контактная группа (конфигурация)

MasterOUTPUT - EMR

Характеристики

1-полюсный интерфейсный модуль, ширина 6.2 мм, идеально подходит для электронных PLC-систем

- Опция Jumper link для простого распределения электропитания на выходные устройства (распределительная шина Bus-bar) и подключения электромагнитных клапанов и других устройств
39.21

Винтовой зажим

См. чертеж на стр. 20

Характеристика контактов	
Контактная группа (конфигурация)	1 HO (SPST-NO)
Номинальный ток/Макс. пиковый ток А	6 / 10
Ном. напряжение/Макс. напряжение В~	$250 / 400$
Номинальная нагрузка AC1 BA	1,500
Номинальная нагрузка (230 B~) AC15 BA	300
Допуст. мощность однофазного двигателя (230 B) кВт	0.185
Отключающая способность DC1: 30/110/220 В A	$6 / 0.2 / 0.12$
Минимальный ток переключения мВт(B/mA)	500 (12 / 10)
Стандартный материал контакта	AgNi
Характеристики входной цепи	
Номинальное VAC/DC	6-12-24-110...125
напряжение (U_{N}) V ${ }_{\text {人 }}$ (50/60 Гц)	220... 240
Номинальная мощность VA (50 Гц) N	См. характеристики катушки стр. 16
Рабочий диапазон	(0.8...1.1) U_{N}
Напряжение удержания	$0.6 \mathrm{U}_{\mathrm{N}}$
Напряжение отключения	$0.1 \mathrm{U}_{\mathrm{N}}$
Технические параметры	
Механическая долговечность AC/DC циклов	$10 \cdot 10^{6}$
Электр. договечность при ном. нагрузке АС1 циклов	$60 \cdot 10^{3}$
Время вкл/выкл мс	$5 / 6$
Изоляция между катушкой и контактами $(1.2 / 50 \mu \mathrm{~s}) \mathrm{kB}$	6 (8 mm)
Электринсканпронность междуотқьтыми контактами VAC	1,000
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-40...+70
Категория защиты	IP20
Сертификация (в соответствии с типом)	$C E$

MasterOUTPUT - SSR

Характеристики

1-полюсный интерфейсный модуль, ширина 6.2 мм, идеально подходит для электронных PLC-систем

- Опция Jumper link для простого распределения электропитания на выходные устройства (распределительная шина Bus-bar) и подключения электромагнитных клапанов и других устройств.

См. чертеж на стр. 20
Выходная цепь (SSR)
Контактная группа (конфигурация)

39 серия - Интерфейсные модули реле 0.1-2-6 А

MasterTIMER - EMR

Характеристики

Интерфейсный модуль с таймером, ширина $6.2 \mathrm{mм}$, идеальное решение для экономии места в электрическом щите
Настройка таймера с помощью поворотной ручки на передней панели, доступной после установки
Клемма управляющего сигнала
DIP-переключатель для выбора 4-х шкал времени и 8-и функций
Дополнительный контейнер с предохранителем 093.63 (для предохранителей 5×20 мм) для защиты выходных цепей, см.стр. 22
Общие точки подключения возможны с помощью дополнительных перемычек (клеммы A1, А2 и 15)
39.81

Винтовой зажим

См. чертеж на стр. 20

MasterTIMER - SSR

Характеристики

Интерфейсный модуль с таймером, ширина 6,2мм, идеальное решение для экономии места в электрическом щите

- Настройка таймера с помощью поворотной ручки на передней панели, доступной после установки
Клемма управляющего сигнала
DIP-переключатель для выбора 4-х шкал времени и 8 -и функций
Дополнительный контейнер с предохранителем 093.63 (для предохранителей 5×20 мм) для защиты выходных цепей, см.стр. 22
Общие точки подключения возможны с помощью дополнительных перемычек (клеммы A1, А2 и $15+$)

39.80

Screw terminal

См. чертеж на стр. 20
Выходная цепь (SSR)
Контактная группа (конфигурация)
Номинальный ток/ Макс. пиковый ток (10 мс) А
Нам. напряжениеМакс. блокирующее напряжение В
Диапазон напряжений но переключение В
Минимальный ток переключения мА
Макс. ток утечки в состоянии ВЫКЛ. МА
Макс. падение напряжения в состоянии ВКЛ. В
Характеристики входной цепи
Номинальное напряжение (U_{N}) V AC/DC
Номинальная мощность VA (50 Hz)/W

Рабочий диапазон
Напряжение удержания
Напряжение отключения

Технические параметры

Временные диапазоны

| Способность повторения | $\%$ | ± 1 |
| :--- | ---: | :---: | :---: |
| Время перекрытия | ms | ≤ 50 |
| Минимальный управляющий импульс | ms | 50 |
| Погрешность точности всего диапазона уставки $\%$ | 5 | |
| Внешний температурный диапазон | ${ }^{\circ} \mathrm{C}$ | |
| Категория защиты | $-20 \ldots+50$ | |
| Сертификация (в соответствии с типом) | IP20 | |

39 серия - Интерфейсные модули реле - Информация по заказам

Информация по заказам

Пример: 39 серия MasterNTERFACE - Интерфейсные электромеханические модули реле с винтовыми клеммами, 1 перекидной контакт (SPDT), напряжение катушки24 V AC /DC.
Серия

D: Специальная версия, EMR
Тип
1 = MasterBASIC, с резьбовой клеммой
3 = MasterPLUS, с резьбовой клеммой, предохранитель выходной цепи
4 = MasterNPUT, с резьбовой клеммой
2 = MasterOUTPUT, с резьбовой клеммой
8 = MasterTIMER
мультифункциональный, с резьбовой клеммой предохранитель выходной цепи

$$
0 \text { = Стандартный }
$$

C: Опции, EMR
$6=$ Стандартный
B: Контакты, EMR $0=\mathrm{CO}$ (за исключением 39.21, 1 HO)
A: Материал контактов, EMR
$0=\mathrm{AgNi}$ Стандартный
$4=\mathrm{AgSnO}_{2}$
$5=\mathrm{AgNi}+\mathrm{Au}(5 \mu \mathrm{~m})$
ABCD: Версия выходного контура, SSR
$7048=0.1$ A - 48 V DC $8240=2 A-230 V A C$ $9024=2 A-24 V D C$

Кол-во контактов
$1=1 \mathrm{CO}$ (только EMR, кроме 39.21, 1 NO)
$0=1 \mathrm{NO}$ (только SSR)
Версия катушки, EMR /
Входной контур, SSR
$0=A C(50 / 60$ Гц) / DC
3 = Подавление утечки тока $\mathrm{AC}(50 / 60$ Гц)
$7=$ Чувствительн DC
$8=$ АС (50/60 Гц)
Напряжение катушки, EMR /
Напряжение на входе, SSR
См.: Характеристики катушки, EMR /
Характеристики входного контура, SSR
EMR - Выбор характеристик и опций: возможны комбинации только в одном ряду.
Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	A	B	C	D
39.11	$0.006-0.012$ $0.024-8.230$	$0-4-5$	0	6	0
39.31	$0.006-0.012$ $0.024-0.060$ $0.125-8.230$ $7.125-7.220$ $3.125-3.230$	$0-4-5$	0	6	0
39.41	$0.006-0.012$ $0.024-0.125$ 8.230	$0-4-5$	0	6	0
39.21	$0.006-0.012$ $0.024-0.125$ 8.230	$0-4-5$	0	6	0
39.81	$0.012-0.024$	0	0	6	0

EMR - Выбор характеристик и опций: возможны комбинации только в одном ряду.
Предпочтительные варианты выделены жирным шрифтом.

Тип	Варианты входов	Варианты выходов, ABCD
39.10	$7.006-7.012$	$7048-8240-9024$
	$7.024-8.230$	
	$7.006-7.012$	
39.30	$7.024-7.060$	
	$7.125-7.220$	$7048-8240-9024$
	0.024-0.125 8.230 $3.125-3.230$	
	$7.006-7.012$	
39.40	$0.024-0.125$ 8.230	$7048-8240-9024$
	$7.006-7.012$	
39.20	$7.024-0.125$	$7048-8240-9024$
	8.230	
39.80	$0.012-0.024$	$7048-8240-9024$

Технические параметры
Изоляция в соответствии с EN 61810-1 ed

Характеристика контактов (EMR)

F 39 - Электрическая долговечность (AC) при ном. нагрузке

Н 39 - Макс. отключающая способность DC1

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $\geq 60 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1. Примечание: Время срабатывания под нагрузкой можно будет увеличить.

39 серия - Интерфейсные модули реле - Технические параметры

Характеристики катушки - Электромеханическое реле

Параметры чувств. катушки DC, тип 39.31

Номин.	Код катушки	Рабочий диапазон		Напряжение	Расчетный	Расчетная
$\begin{gathered} \text { напряж. } \\ U_{N} \end{gathered}$		$\mathrm{U}_{\min }$	$\mathrm{U}_{\max }$	отключения U_{r}	входной ток $\text { при } U_{N}-I_{N}$	мощность при U_{N}
V		V	V	V	mA	W
$\begin{gathered} 125 \\ (110 \ldots 125) \end{gathered}$	7.125	88	138	12.5	4.6	0.6
220	7.220	176	242	22	3.0	0.6

Параметры катушки AC/DC, тип 39.11/21/31/41

		Рабочий диапазон			Расчетный	
напряж. U_{N}	катушки	$\mathrm{U}_{\min }$	$U_{\max }$	отключения U_{r}	входной ток при $U_{N}-I_{N}$	мощность при U_{N}
V		V	V	V	mA	VA / W
6	0.006	4.8	6.6	0.6	35	$0.2 / 0.2$
12	0.012	9.6	13.2	1.2	15	0.2 / 0.2
24	0.024	19.2	26.4	2.4	11	0.25/0.25
$60{ }^{(1)}$	0.060	48	66	6.0	5.7	0.35/0.35
$\begin{gathered} 125(2) \\ (110 \ldots 125) \end{gathered}$	0.125	88	138	12.5	5.6	0.7 / 0.7

${ }^{(1)} 60 \mathrm{~V} \mathrm{AC/DC}$ только для типа 39.31
(2) $125 \mathrm{~V} \mathrm{AC/DC}$ только для типов 39.21/31/41

Параметры катушки АС, тип 39.11/21/31/41

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Напряжение	Расчетный	Расчетная
				ОТКлючения U	входной ток при $\mathrm{U}_{\mathrm{N}}-\mathrm{I}_{\mathrm{N}}$	мощность при U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{max}^{\text {max }}$	${ }_{\text {r }}$	при $\mathrm{U}_{\mathrm{N}}-\mathrm{I}_{\mathrm{N}}$	при U_{N}
V		V	V	V	mA	VA / W
$\begin{gathered} 230 \\ (230 . .240) \end{gathered}$	8.230	184	264	23	4.3	1 / 0.4

Параметры катушки с подавлением тока утечки, тип 39.31 .3

Номин. напряж. U_{N} V	Код катушки	Рабочий диапазон		Напряжение отключения U_{r}	Расчетный входной ток при $\mathrm{U}_{\mathrm{N}}-\mathrm{I}_{\mathrm{N}}$	Расчетная мощность
при U_{N}						
125 $(110 . .125)$	3.125	88	138	44	8.4	$1.1 / 1$
230 $(230 . .240)$	3.230	184	264	72	5.9	$1.4 / 0.5$

Интерфейсные модули 39 серии (версия катушки 3) имеют встроенный контур подавления утечки тока, предназначены для промышленных приложений в которых важно обеспечить размыкание контактов, даже при наличии в цепи остаточного тока (110...125)V АС и (230...240)V AC.
Такая проблема возникает, например, при подключении интерфейсных модулей к PLC с симистерными выводами или при подключении по достаточно длинным кабелям.

Параметры катушки AC/DC с таймером, тип 39.81

Номин. напряж	Код катушки	Рабочий диапазон (AC/DC)		Напряжение отключения	Расчетный входной ток при U_{N}		Расчетная мощность при U_{N}	
U_{N}		$\mathrm{U}_{\text {min }}$	$U_{\max }$	U_{r}	DC	AC	DC	AC
V		V	V	V	mA	mA	W	VA / W
12	0.012	9.6	13.2	1.2	15	23	0.2	$0.3 / 0.2$
24	0.024	19.2	26.4	2.4	11	19	0.25	0.4 / 0.3

Входные параметры - твердотельные реле

Параметры входной цепи, чувствит. DC, тип 39.10/20/30/40

		Рабочий диапазон				
напряж. U_{N}	питания		$\mathrm{U}_{\max }$	отключения U_{r}	входной ток $п р и U_{N}-I_{N}$	мощность при U_{N}
V		V	V	V	mA	W
6	7.006	4.8	6.6	0.6	7.5	0.2
12	7.012	9.6	13.2	1.2	20.7	0.25
24 (1)	7.024	19.2	26.4	2.4	10.5	0.25
60 (2)	7.060	48	66	6.0	6.4	0.4
$\begin{gathered} \hline 125(2) \\ (110 . . .125) \end{gathered}$	7.125	88	138	12.5	4.6	0.6
220 (2)	7.220	176	242	22	3.0	0.6

${ }^{(1)} 24 \mathrm{~V}$ DC только для типа 39.10/20/30
${ }^{(2)} 60 \mathrm{~V}$ DC, 125 V DC и 220 V DC только для типа 39.30

Входные данные AC/DC тип 39.20/30/40

| Номин.
 напряж.
 U_{N} | Код
 питания | Рабочий диапазон
 V | | Напряжение
 отключения | Расчетный
 входной ток | Расчетная
 мощность |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24 (3) | $\mathbf{0 . 0 2 4}$ | 19.2 | 26.4 | 2.4 | 17.5 | $0.4 / 0.3$ |
| 125
 $(110 \ldots 125)$ | 0.125 | 88 | 138 | 12.5 | 5.5 | $0.7 / 0.7$ |

${ }^{(3)} 24 \mathrm{~V} \mathrm{AC/DC}$ только для типа 39.30/40

Входные данные АС, тип 39.10/20/30/40

Входные данные - типы подавления тока утечки, тип 39.30.3

Номин. напряж. U_{N}	Код питания	$\begin{gathered} \text { Рабочи } \\ \mathrm{U}_{\text {min }} \end{gathered}$	Uпазон $\mathrm{U}_{\text {max }}$	Напряжение отключения U_{r}	Расчетный входной ток при $\mathrm{U}_{\mathrm{N}}-\mathrm{I}_{\mathrm{N}}$	Расчетная мощность при U_{N}
V		V	V	V	mA	VA / W
$\begin{gathered} 125 \\ (110 \ldots 125) \end{gathered}$	3.125	88	138	44	8.4	1.1 / 1
$\begin{gathered} 230 \\ (230 . .240) \end{gathered}$	3.230	184	264	72	5.9	1.4 / 0.5

Интерфейсные модули 39 серии (версия катушки 3) имеют встроенный контур подавления утечки тока, предназначены для промышленных приложений в которых важно обеспечить размыкание контактов, даже при наличии в цепи остаточного тока (110...125)V АС и (230...240) V AC.
Такая проблема возникает, например, при подключении интерфейсных модулей к PLC с симистерными выводами или при подключении по достаточно длинным кабелям.

Параметры входа AC/DC с таймером, тип 39.80

Номин. напряж.	Код питания	Рабочий диапазон (AC/DC)		Напряжение отключения U_{r}	Расчетный входной ток при U_{N}		Расчетнаямощность при U_{N}	
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max }$		DC	AC	DC	AC
V		V	V	V	mA	mA	W	VA / W
12	0.012	9.6	13.2	1.2	15	23	0.2	$0.3 / 0.2$
24	0.024	19.2	26.4	2.4	11	19	0.25	$0.4 / 0.3$

39 серия - Интерфейсные модули с таймером
Технические параметры

Тип теста		Базовый стандарт	
Электростатический разряд	контактный разряд	EN 61000-4-2	4 kV
	воздушный разряд	EN 61000-4-2	8 kV
Электромагнитное поле РЧ•диапазона	$(80 \div 1,000 \mathrm{MHz})$	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
	(1,400 $\div 2,700 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
Быстрый переходный режим (разрыв) (5-50 ns, 5 and 100 kHz)	на клеммах питания	EN 61000-4-4	4 kV
	на клеммах управляющего сигнала	EN 61000-4-4	4 kV
Импульсы (1.2/50 $\mu \mathrm{s}$) на клеммах питания	общий режим	EN 61000-4-5	2 kV
	дифференциальный режимEN 51000-4-5		0.8 kV
Общий режим для РЧ-диалазана$(0.15 \div 80 \mathrm{MHz})$	на клеммах питания	EN 61000-4-6	10 V
	на клеммах управляющего сигнала	EN 61000-4-6	3 V
Радиационное и кондуктивное излучение			EN 55022 класс В
Прочее			
		1/6	
Виброустойчивость (EMR, $10 . .55$ Гц,): НО/НЗ		g	10/5
Потери мощности	без нагрузки Вт	0.3	
	при номинальном токе Вт	0.8	
Клеммы			
Длина зачистки провода	MM	10	
(다ํ) Момент завинчивания	Нм	0.5	
	MM ${ }^{2}$	Однопроволочный и многопроволочный провод	
Макс. размер провода		$1 \times 2.5 / 2 \times 1.5$	
	AWG	$1 \times 14 / 2 \times 16$	
Мин.сечение провода	MM^{2}	1×0.2	
	AWG	1×24	

Временные шкалы

(0.1...3)s
(1...20)min

(0.3...6)h

функции

СВЕТОДИОД	Напряжение питания	НО выходной контакт
	Выкл.	Открыт
	Вкл.	Открыт
- - - - - -	Вкл.	Открыт (идет отсчет времени)
	Вкл.	Закрыт

** Напряжение, отличное от напряжения электропитания, может быть использовано для команды Старт (B1), например:
$\mathrm{A} 1-\mathrm{A} 2=24 \mathrm{~V}$ AC
$\mathrm{B} 1-\mathrm{A} 2=12 \mathrm{~V} D C$

Чертежи

39.10
39.11

Винтовой зажим

39.30 / 39.30.3
39.31 / 39.31 .3

Винтовой зажим

39.80
39.81

Винтовой зажим

39.20
39.21

Винтовой зажим

39.40
39.41

Винтовой зажим

39 серия - Интерфейсные модули реле 0.1-2-6 А
Комбинации для электромеханических реле (1-полюсное 6 A)

Код интерфейсных модулей	Напряжение питания	Тип репе	Тип розетки
MasterBASIC			
39.11.0.006.0060	6 V AC/DC	34.51.7.005.0010	93.61.7.024
39.11.0.012.0060	12 V AC/DC	34.51.7.012.0010	93.61.7.024
39.11.0.024.0060	24 V AC/DC	34.51.7.024.0010	93.61.7.024
39.11.8.230.0060	(230...240)V AC	34.51.7.060.0010	93.61.8.230
MasterPLUS			
39.31.0.006.0060	6 V AC/DC	34.51.7.005.0010	93.63.7.024
39.31.0.012.0060	12 V AC/DC	34.51.7.012.0010	93.63.7.024
39.31.0.024.0060	24 V AC/DC	34.51.7.024.0010	93.63.7.024
39.31.0.060.0060	60 V AC/DC	34.51.7.060.0010	93.63.7.060
39.31.0.125.0060	(110...125)V AC/DC	34.51.7.060.0010	93.63.0.125
39.31.8.230.0060	(230...240)V AC	34.51.7.060.0010	93.63.8.230
39.31.7.125.0060	(110...125)V DC	34.51.7.060.0010	93.63.7.125
39.31.7.220.0060	220 V DC	34.51.7.060.0010	93.63.7.220
39.31.3.125.0060	(110...125)V AC	34.51.7.060.0010	93.63.3.125
39.31.3.230.0060	(230...240)V AC	34.51.7.060.0010	93.63.3.230
MasterINPUT			
39.41.0.006.5060	6 V AC/DC	34.51.7.005.5010	93.64.0.024
39.41.0.012.5060	12 V AC/DC	34.51.7.012.5010	93.64.0.024
39.41.0.024.5060	24 V AC/DC	34.51.7.024.5010	93.64.0.024
39.41.0.125.5060	(110...125) V AC/DC	34.51.7.060.5010	93.64.0.125
39.41.8.230.5060	(230...240)V AC	34.51.7.060.5010	93.64.8.230
MasterOUTPUT			
39.21.0.006.0060	6 V AC/DC	34.51.7.005.0010	93.62.7.024
39.21.0.012.0060	12 V AC/DC	34.51.7.012.0010	93.62.7.024
39.21.0.024.0060	24 V AC/DC	34.51.7.024.0010	93.62.7.024
39.21.0.125.0060	(110...125) V AC/DC	34.51.7.060.0010	93.62.0.125
39.21.8.230.0060	(230...240)V AC	34.51.7.060.0010	93.62.8.230
MasterTIMER			
39.81.0.012.0060	12 V AC/DC	34.51.7.012.0010	93.68.0.024
39.81.0.024.0060	24 V AC/DC	34.51.7.024.0010	93.68.0.024

Комбинации для твердотельного реле (1-полюсное 0.1 или 2 A)

Код интерфейсных модулей	Напряжение питания	Тип репе	Тип розетки
MasterBASIC			
39.10.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.61.7.024
39.10.7.012.xxxx	12 V DC	34.81.7.012.xxxx	93.61.7.024
39.10.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.61.7.024
39.10.8.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.61.8.230
MasterPLUS			
39.30.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.63.7.024
39.30.7.012.xxxx	12 V DC	34.81.7.012.xxxx	93.63.7.024
39.30.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.63.7.024
39.30.7.060.xxxx	60 V DC	34.81.7.060.xxxx	93.63.7.060
39.30.7.125.xxxx	(110...125)V DC	34.81.7.060.xxxx	93.63.7.125
39.30.7.220.xxxx	220 V DC	34.81.7.060.xxxx	93.63.7.220
39.30.0.024.xxxx	24 V AC/DC	34.81.7.024.xxxx	93.63.0.024
39.30.0.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.63.0.125
39.30.8.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.63.8.230
39.30.3.125.xxxx	(110...125)V AC	34.81.7.060.xxxx	93.63.3.125
39.30.3.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.63.3.230
MasterNPUT			
39.40.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.64.0.024
39.40.7.012.xxxx	12 V DC	34.81.7.012.xxxx	93.64.0.024
39.40.0.024.xxxx	24 V AC/DC	34.81.7.024.xxxx	93.64.0.024
39.40.0.125.xxxx	(110...125) V AC/DC	34.81.7.060.xxxx	93.64.0.125
39.40.8.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.64.8.230
MasterOUTPUT			
39.20.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.62.7.024
39.20.7.012.xxxx	12 V DC	34.81.7.012.xxxx	93.62.7.024
39.20.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.62.7.024
39.20.0.125.xxxx	(110...125) V AC/DC	34.81.7.060.xxxx	93.62.0.125
39.20.8.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.62.8.230
MasterTIMER			
39.80.0.012.xxxx	12 V AC/DC	34.81.7.012.xxxx	93.68.0.024
39.80.0.024.xxxx	24 V AC/DC	34.81.7.024.xxxx	93.68.0.024

Аксессуары

Предохранитель выходной цепи для типов реле 39.31/30/41/40/81/80

- Запатентованное решение для простой защиты выходной цепи
- Для предохранителей $5 \times 20 \mathrm{mм}$, до $6 \mathrm{~A}, 250 \mathrm{~V}$
- Визуальный контроль состояния предохранителя через окошко
- Быстрая установка в розетке

Многофункциональный предохранительный модуль

0. Розетка поставлнетсн без контейнера с предохранителем. Однако, отсутствующий предохранитель замещается внутренней электрической перемычкой, которан позволяет использовать интерфейсный модуль без предохранителя. В этом состоянии штифт-индикатор не виден, клемма защищена специальным колпачком.

1. При помещении контейнера с предохранителем в розетку после удаления колпачка, предохранитель подключается последовательно в цепь выходных клемм интерфейсного модуля (11 для реле EMR, $13+$ для реле SSR, 15 для таймеров EMR, 15+ для таймеров SSR).

2. При извлечении контейнера с предохранителем (например при сгоревшем предохранителе) выходной контур остается разомкнутым в безопасном положении.

3. Для восстановления выходного контура необходимо либо поместить в розетку контейнер с целым предохранителем, либо перевести штифт-индикатор в положение 0, осторожно надавив на него в направление стрелки.

Аксессуары

093.16.1

093.60

060.72
16-ми полюсный шинный соединитель $\quad 093.16$ (синий) $\mid 093.16 .0$ (черный) 093.16 .1 (красный)

Номинальные значения
Обеспечивает много подключений, рядом

Пластиковый разделитель двойного назначения (разделение 1.8 mm или 6.2 mm)
093.60

1. Путем удаления выступающих ребер (от руки), разделитель становится 1,8 мм толщиной; полезно для визуального разделения разных групп интерфейсов, или длн защитного разделения разных напряжений соседних интерфейсов, или для защиты оголенных концов перемычек.

2. Если выступающие ребра не удалять, обеспечивается разделение модулей 6.2мм. Если с помощью ножниц вырезать пластиковые сегменты разделителя, то для подключения разных групп модулей можно использовать стандартные шинные соединители.

Блок маркировок, пластик, 72 знака, 6×12 мм

Аксессуары

MasterADAPTER	093.68 .14 .1
для подключения 8 модулей MasterINTERFACE	

MasterADAPTER обеспечивает подключение электропитания 8 модулей MasterINTERFACE с помощью провода, и подключение к выходу контроллера PLC с помощью 14-жильного плоского кабеля.
Технические параметры

Номинальный ток (на контакт)	A	1
Минимальная мощность источника питания	W	3
Номинальное напряжение (U_{N})	V DC	24
Рабочий диапазон		(0.8...1.1) U_{N}
Управляющий сигнал		Плюс переключение (положит. A1)
Индикация состояния электропитания		Зеленый светодиод
Допустимы температурный диапазон	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Клеммы для подключения управляющего сигнала 24 В		
Тип подключения		14-жильный, согласно IEC 60603-1
Клеммы для электропитания 24 В		
Длина зачистки провода	mm	9.5
(4)t Момент завинчивания	Nm	0.5
Макс. Размер провода		
Одножильный провод	mm^{2}	$1 \times 4 / 2 \times 1.5$
	AWG	$1 \times 12 / 2 \times 16$
Многожильный провод	mm^{2}	$1 \times 2.5 / 2 \times 1.5$
	AWG	$1 \times 14 / 2 \times 16$

Схема подключчения

48 серия -Интерфейсные модули реле 8 А

Характеристики

Интерфейсный модуль с 2-х полюсным реле блокировки, ширина 15.8 мм.
48.12-2 полюса 8 А (Винтовой зажим)
. Чувствительные катушки DC
Реле с принудительным управлением Контактами, согл. EN 50205 тип В
Установка на 35-мм рейку (EN 60715)

Согласно EN 50205 только 1 NO и 1 NC (11-14 и 21-22 или 11-12 и 21-24) могут использоваться как контакты с принудительным переключением

См. чертеж на стр. 7

Характеристика контактов	
Контактная группа (конфигурация)	2 перекидных контакта (DPDT)
Номинальный ток/Макс. пиковый ток A	8/15
Ном. напрнжение/Макс. напряжение В~	250/400
Номинальнан нагрузка AC1 BA	2,000
Номинальнан нагрузка (230 B~) AC15 BA	500
Допуст. мощность однофазного двигателя (230 B) kBт	0.37
Отключающая способность DC1: 30/110/220 В A	8/0.65/0.2
Минимальный ток переключения мВтт(B/mA)	300 (5/5)
Стандартный материал контакта	AgNi
Характеристики катушки	
Номин. напряж. $\left(\mathrm{U}_{\mathrm{N}}\right) \quad \mathrm{V}$ AC (50/60 Гц)	-
V DC	12-24
Ном. мощн. AC/Чувствит. DC VA (50 Гц)/W	-/0.7
Рабочий диапазон AC	-
Чувствит. DC	(0.75 ..1.2) U_{N}
Напряжение удержания AC/DC	$-/ 0.4 \mathrm{U}_{\mathrm{N}}$
Напряжение отключения AC/DC	$-/ 0.1 \mathrm{U}_{\mathrm{N}}$
Технические параметры	
Механическая долговечность AC/DC циклов	$-/ 10 \cdot 10^{6}$
Электр. договечность при ном. нагрузке АС1 циклов	$100 \cdot 10^{3}$
Время вкл/выкл мс	10/4
Изоляция между катушкой и контактами (1.2/50 нs) kB	6 (8 mm)
Электрмесканпроностьмеждуотрьпьмиконтактами VAC	1,500
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Категория защиты	IP 20
Сертификация (в соответствии с типом)	$\text { CE (11) } \Delta c \pi_{\mathrm{US}}^{\oplus}$

48 серия -Интерфейсные модули реле 8-10-16 А

Характеристики

Интерфейсные модули 1-и 2-полюсных, реле, ширина 15.8 мм.
Идеальный интерфейс для ПЛК и электронных систем
48.31-1 полюс 10 A (Винтовой зажим) 48.52-2 полюса 8 А (Винтовой зажим) 48.72-2 полюса 8 A (Пружинный зажим)

Катушки AC или чувствит. DC
Мгновенное извлечение реле с помощью пластикового зажима
Индикация состояния питания и модуль подавления электромагнитного импульса в стандартном исполнении
Идентификационный номер
Сертифицировано UL
Установка на 35-мм рейку (EN 60715)

48.72

Пружинный зажим

См. чертеж на стр. 7
Характеристика контактов
Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение
Номинальная нагрузка AC1
Номинальная нагрузка (230 B~) AC15 BA
Допуст. мощность однофазного двигателя (230 B-) kBт
Отключающая способность DC1: 30/110/220 B A
Минимальный ток переключения мВт(B/MA)
Стандартный материал контакта
Характеристики катушки
Номин. напряж. $\left(\mathrm{U}_{\mathrm{N}}\right) \quad$ V AC (50/60 ГL)
Ном. мощн. АС/Чувствит. DC VA (50 Гц)/W
Рабочий диапазон

A
4)

- 1 группа контактов, 10 A
- Винтовой зажим
- Установка на 35-мм рейку (EN 60715)
48.52/72

2 группы контактов, 8 A

- Винтовые и зажимные варианты клемм - Установка на 35-мм рейку (EN 60715)

AC

2 перекидных контакта (DPDT)
1 перекидной контакт (SPDT)
B
$\frac{12-24-110-120-230}{12-24-125}$
8/1

48 серия -Интерфейсные модули реле 8-10-16 А

Характеристики

Интерфейсные модули 1-и 2-полюсных, реле, ширина 15.8 мм.
Идеальный интерфейс для ПЛК и электронных систем
48.61-1 полюс 16 А (Винтовой зажим) 48.81-1 полюс 16 A (Пружинный зажим) 48.62-2 полюса 10 А (Винтовой зажим) 48.82-2 полюса 10 А (Пружинный зажим)

Катушки AC или чувствит. DC
Мгновенное извлечение реле с помощью пластикового зажима
Индикация состояния питания и модуль подавления электромагнитного импульса в стандартном исполнении
Идентификационный номер
Сертифицировано UL
Установка на 35-мм рейку (EN 60715)
48.61 / 48.62 Винтовой зажим

48.81 / 48.82

Пружинный зажим

См. чертеж на стр. 7

Характеристика контактов

Контактная группа (конфигурация)

Ном. напряжение/Макс. напряжение
Номинальная нагрузка AC1
Номинальная нагрузка (230 B~) AC15 BA
Допуст. мощность однофазного двигателя (230B-) kBT
Отключающая способность DC1: 30/110/220 B A
Минимальный ток переключения мВт(B/мA)
Стандартный материал контакта
Характеристики катушки
Номин. напряж. $\left(\mathrm{U}_{\mathrm{N}}\right)$
V AC (50/60 Гц)
$\begin{array}{rr} & \text { V DC } \\ \text { Ном. мощн. АС/Чувствит. DC } & \text { VA (50 Гц) } W\end{array}$
Рабочий диапазон \quad AC

Напряжение удержания	AC/DC
Напряжение отключения	AC/DC

Технические параметры
Механическая долговечность AC/DC циклов
Электр. договечность при ном. нагрузке АС1 циклов
Время вкл/выкл
Изолғция между катушкой и контактами $(1.2 / 50 \mu \mathrm{~s}) \mathrm{kB}$
Электрмесканпрочность междуоткрытыммконтактам VAC
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$
Категория защиты

1 группа контактов, 16 A
Винтовые и зажимные варианты клемм Установка на 35-мм рейку (EN 60715)

* Для тока> 10 А, контактные клеммы должны соединаться параллельно (21 c 11, 24 c 14, 22 c 12).

1 перекидной контакт (SPDT)

2 перекидных контакта (DPDT)
~
\square

16*/30

48.62/82

2 группы контактов, 10 A
Винтовые и зажимные варианты клемм Установка на 35 -мм рейку (EN 60715)

Информация по заказам

Пример: 48 серия, монтаж на рейку 35 мм (EN 60715), интерфейсный модуль реле с винтовыми клеммами, 2 перекидных контакта (DPDT) 8 A, чувствительнан катушка 24 V DC, зеленый светодиод + диод, индикацин катушки 99.02.
 48.61,48.81, 16 A
$2=2$ полюса для 48.12, 48.52, 48.72, 8 А 48.62, 48.82, 10 A (48.62, 48.82 только DC)

Тип катушки

7 = Чувствит. DC
8 = AC (50/60 Гц)
9 = DC
Напряжение катушки
См. характеристики катушки

Выбор характеристик и опций: возможны комбинации только в одном ряду.
Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	A	B	C	D
48.12	DC	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$
$48.31 / 52 / 72$	AC	$\mathbf{0 - 5}$	0	$\mathbf{6}$	0
$48.31 / 52 / 72$	Чувств. DC	$\mathbf{0 - 5}$	0	$\mathbf{5}$	0
$48.61 / 81$	АС	$\mathbf{0 - 4}$	0	$\mathbf{6}$	0
$48.61 / 81$	Чувств. DC	$\mathbf{0 - 4}$	0	$\mathbf{5}$	0
$48.62 / 82$	Чувств. DC	$\mathbf{0 - 4}$	$\mathbf{0}$	$\mathbf{5}$	0

Технические параметры

Изоляция		48.12/31/61/62	48.52/72	48.12/31/61/62/81/82	
Изоляция в соответствии с	Номинальное напряжение изоляции В	250	250	400	
EN 61810-1	Номинальное напряжение пробоя кВ	4	4	4	
	Уровень загрязнения	3	2	2	
	Категория перегрузки	III	III	III	
Изоляция между катушкой и контактами (1.2/50 мкс)) $^{\text {¢ }}$ (В		6 (8 mm)			
Электрическоя прочность между открытыми контоктами VAC		1,000; 1,500 (48.12)			
Электрическая прочноеть между соседними контактами V AC		2,000 (48.52); 2,500 (48.12/62)			
Устойчивость к перепадам					
Разрыв (5..50) нс, 5 кГц, на А 1 -А2		EN 61000-4-4		уровень 4 (4 кВ)	
Импульс (1.2/50 мкс) на А 1 -А2 (при дифференциальном включении)		EN 61000-4-5		уровень 3 (2 кВ)	
Прочее					
Время дребезга: НО/Н3 MC		2/5; 2/10 (48.12)			
Виброустойчивость (5...55)Гц: НО/Н3 g		10/4 (для 1 полюса)		15/3; 20/6 (48.12) для 2 полюсов	
Потери мощнасти	без нагрузки Вт	0.7			
	при номинальном токе \quad Вт	$1.2(48.12 / 31)$	1.3 (48.52/72)	1.2 (48.61/62/81/82)	
Длина зачистки провода мM		8			
(4)\% Момент завинчивания Нм $^{\text {¢ }}$		0.5			
Макс. размер провода	MM ${ }^{2}$	Винтовой зажим		Пужинный зажим	
		одножильный провод	многожильный провод	одножильный провод	многожильный провод
		1x6 / 2x2.5	$1 \times 4 / 2 \times 2.5$	2x(0.2...1.5)	2x(0.2..1.5)
	AWG	$1 \times 10 / 2 \times 14$	1 $\times 12$ / 2×14	2x(24...18)	2x(24...18)

Характеристика контактов

F 48 - Электрическая долговечность (АС) при ном. нагрузке, Типы 48.31/61/81

F 48 - Электрическая долговечность (AC) при ном. нагрузке, Типы 48.52/72

F 48 - Электрическая долговечность (АС) при ном. нагрузке, Типы 48.62/82

F 48 - Электрическая долговечность (АС) при ном. нагрузке, Типы 48.12

H 48 - Макс. отключающая способность DC1, Типы 48.62/82

H 48 - Макс. отключающая способность DC1,
Типы 48.12

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1.
Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики катушки

Параметры чувств. катушки D (0.5 W)

Номин.	Код	Рабочий диапазон		Погпощающ.
U_{N}		$\mathrm{U}_{\text {min }}{ }^{*}$	$\mathrm{U}_{\text {max }}{ }^{* *}$	I при U ${ }_{\text {N }}$
B		B	B	mA
12	7.012	8.8	21	41
24	7.024	17.5	42	22.2
125	7.125	91	219	4

${ }^{*} U_{\text {min }}=0.8 U_{N}$ для 48.61, 48.62, 48.81 и 48.82
${ }^{* *} U_{\max }=1.5 U_{N}$ для 48.61, 48.62, 48.81 и 48.82

Параметры катушки DC, 2-полюсное реле - типы 48.12

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Сопротивл. R	Погпощающ. способность I при U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
B		B	B	Ω	MA
12	9.012	9	14.4	205	58.5
24	9.024	18	28.8	820	29.3

R 48 - Отношение рабочего диапазона для DC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

R 48 - Отношение рабочего диапазона для DC к температуре окр. среды - типы 48.12

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Параметры катушки АС

	Код катушки	Рабочий диапазон		Погпощающ.
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	I при $\mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz})$
B		B	B	MA
12	8.012	9.6	13.2	90.5
24	8.024	19.2	26.4	46
110	8.110	88	121	10.1
120	8.120	96	132	11.8
230	8.230	184	253	7.0

R 48 - Отношение рабочего диапазона для АС к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Комбинации	Обозначение	Тип розетки	Тип реле	Модуль	Крепежный зажим
	48.12	95.05 .0	50.12	-	095.71
48.31	95.03	40.31	99.02	095.01	
48.52	95.05	40.52	99.02	095.01	
48.61	95.05	40.61	99.02	095.01	
48.62	95.05	44.62	99.02	095.01	
48.72	95.55	40.52	99.02	095.91 .3	
48.81	95.55	40.61	99.02	095.91 .3	
48.82	95.55	44.62	99.02	095.91 .3	

Контурный чертеж

48.12

Винтовой зажим

48 серия -Интерфейсные модули реле 8-10-16 А

Аксессуары

095.18	8-ми полюсный шинный соединитель Версия для винтовых клемм	095.18 (синий)	095.18 .0 (черный)
	Номинальные значения	$10 \mathrm{~A}-250 \mathrm{~V}$	
- [1/	Блок маркировок, пластик, 72 знака, 6×12 мм	060.72	

Коды на упаковке

Кодировка зажимов и упаковки розеток.

Варианты кодировки обозначаются тремя последними буквами:

(1) finder

Характеристики

Интерфейсные Модули Реле с 1 и 2 группами контактов
Позолоченные контакты 5 мкм длЯ возможности коммутации низкоуровневых сигналов
49.31-50×0-1 полюс 10 A (Винтовой зажим) $49.52-50 \times 0-2$ полюса 8 A (Винтовой зажим) 49.72-50×0-2 полюса 8 A (Пружинный зажим)

ширина одного модуля 15.5 мм
Идеальный интерфейс для ПЛК и электронных систем
Катушки AC или DC
Моментальное извлечение реле с использованием пластикового удерживающего зажима
Индикация состояния источника питания и модуль подавления электромагнитного импульса
Идентификационный номер
Установка на 35-мм рейку (EN 60715)

49.31-50x0 / 49.52
 Винтовой зажим

49.72-50x0 Пружинный зажим

См. чертеж на стр. 8

Характеристика контактов

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток

Ном. напрнжение/Макс. напряжение	B~
Номинальнан нагрузка $\mathrm{AC1}$	BA

Номинальная нагрузка (230 B~) AC15 BA
Допуст. мощность однофазного двигателя (230 B~) kBт

Отключающая способность DC1:30/110/220 B A
Минимальный ток переключения мВт(B/мA)

Стандартный материал контакта
Характеристики катушки
Номин. напряж. (U_{N}) V AC (50/60 Гц)
Ном. мощн. AC/DC/Чувствит. DC VA $(50 \mathrm{~Hz})$ WN
Рабочий диапазон AC

	DC/Чувствит. DC
Напряжение удержания	AC/DC
Напряжение отключения	AC/DC

Технические параметры

Механическая долговечность AC/DC циклов
Электр. договечность при ном. нагрузке AC1 циклов
Время вкл/выкл мс
Изоляция между катушкой и контактами (1.2/50 $\mu \mathrm{s}$) kB
Эгектринескадпронностьмеждуоткрыпымиконтактами VAC
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$
Категория защиты
Сертификация (в соответствии с типом)
49.31-50x0

1 группа контактов, 10 A

- Материал контактов $\mathrm{AgNi}+\mathrm{Au}(5 \mu \mathrm{~m})$
- Винтовой зажим
- Установка на 35-мм рейку (EN 60715)

49.52/72-50x0

2 группы контактов, 8 A
Материал контактов $\mathrm{AgNi}+\mathrm{Au}(5 \mu \mathrm{~m})$ - Винтовые и зажимные варианты клемм Установка на 35-мм рейку (EN 60715)
-
8.xxx0060

7.xxx. 0050 9.xxx. 0050

* При подключении контактов в параллель можно достигнуть зна чений В диапа зоне [1 (0.1/1)].

2 перекидных контакта (DPDT)
1 переки

49 Серия - Интерфейсные модули реле 8-10-16 А

Характеристики

Интерфейсные Модули Реле с 1 и 2 группами контактов
Контакты AgNi для коммутации среднеуровневых сигналов
49.31-00x0-1 полюс 10 A (Винтовой зажим) 49.52-00×0-2 полюса 8 A (Винтовой зажим) 49.72-00х0 - 2 полюса 8 А (Пружинный зажим)

ширина одного модуля 15.5 мм
Идеальный интерфейс для ПЛК и
электронных систем
Катушки AC или DC
Моментальное извлечение реле с использованием пластикового удерживающего зажима
Индикация состояния источника питания и модуль подавления электромагнитного импульса
Идентификационный номер
Установка на 35-мм рейку (EN 60715)

49.31-00×0 / 49.52

Винтовой зажим

49.72-00x0 Пружинный зажим

См. чертеж на стр. 8

Характеристика контактов

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток

Ном. напрнжение/Макс. напряжение	B~
Номинальная нагрузка $A C 1$	BA

Номинальная нагрузка ($230 \mathrm{~B} \sim$) AC15 BA
Допуст. мощность однофазного двигателя (230 B~) kBт
Отключающая способность DC1: 30/110/220 B A
Минимальный ток переключения мВт(B/мA)
Стандартный материал контакта
Характеристики катушки
Номин. напряж. $\left(U_{N}\right) \quad V$ AC (50/60 Гц)
Ном мощн VDC
Рабочий диапазон AC

	DC/Чувствит. DC
Напряжение удержанин	AC/DC
Напряжение откпючения	AC/DC

Напряжение отключения
Механическая долговечность AC/DC циклов
Электр. договечность при ном. нагрузке АС1 циклов
Время вкл/выкл мС
Изоляция между катушкой и контактами (1.250 $\mu \mathrm{s}) \mathrm{kB}$
Эгектринескаяпронностьмеждуоткрьтьмиконтактами VAC
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$
Категория защиты
Сертификация (в соответствии с типом)
49.31-00x0

1 группа контактов, 10 A
Материал контактов AgNi
Винтовой зажим
Установка на 35-мм рейку (EN 60715)
49.52/72-00x0

2 группы контактов, 8 A
Материал контактов AgN
Винтовые и зажимные варианты клемм Установка на 35-мм рейку (EN 60715)

49.31-00x0 - 1 группа контактов, 10 A - Материал контактов AgNi - Винтовой зажим - Установка на 35-мм рейку (EN 60715)	- 2 группы контактов, 8 A - Материал контактов AgNi - Винтовые и зажимные варианты клемм - Установка на 35-мм рейку (EN 60715)
1 перекидной контакт (SPDT)	2 перекидных контакта (DPDT)
10/20	8/15
250/400	250/250
2,500	2,000
500	400
0.37	0,3
10/0.3/0.12	8/0.3/0.12
300 (5/5)	300 (5/5)
AgNi	AgNi
12-24-110-120-230	12-24-110-120-230
12-24-125	12-24-125
1.2/0.65/0.5	1.2/0.65/0.5
$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
$(0.73 \ldots 1.5) \mathrm{U}_{\mathrm{N}} /(0.73 \ldots 1.7) \mathrm{U}_{\mathrm{N}}$	$(0.73 \ldots 1.5) \mathrm{U}_{\mathrm{N}} /(0.73 \ldots 1.7) \mathrm{U}_{\mathrm{N}}$
$0.8 \mathrm{U}_{\mathrm{N}} / 0.4 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.4 \mathrm{U}_{\mathrm{N}}$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
$10 \cdot 10^{6 / 20} \cdot 10^{6}$	$10 \cdot 10^{6} / 20 \cdot 10^{6}$
$200 \cdot 10^{3}$	$150 \cdot 10^{3}$
7/4 (AC) - 12/12 (DC)	7/4 (AC) - 12/12 (DC)
6 (8 mm)	6 (8 mm)
1,000	1,000
-40...+70	-40...+70
IP 20	IP 20
	RINA (S) (${ }_{\text {¢ }}{ }^{\text {c }}$

49 Серия - Интерфейсные модули реле 8-10-16 А

Характеристики

Интерфейсные Модули Реле с 1 и 2 группами контактов
Контакты из AgCdO для коммутации в напряженном режиме
49.31-20x0-1 полюс 10 A (Винтовой зажим) 49.52-20×0-2 полюса 8 A (Винтовой зажим) 49.72-20x0 - 2 полюса 8 A (Пружинный зажим)

ширина одного модуля 15.5 мм
Идеальный интерфейс для ПЛК и электронных систем
Катушки $A C$ или DC
Моментальное извлечение реле с использованием пластикового удерживающего зажима
Индикация состояния источника питания и модуль подавления электромагнитного импульса
Идентификационный номер
Установка на 35-мм рейку (EN 60715)
49.31-20x0 / 49.52

Винтовой зажим

49.72-20x0 Пружинный зажим
49.31-20x0

1 группа контактав, 10 A
Материал контактов AgCdO
Винтовой зажим
Установка на 35 -мм рейку (EN 60715)
49.52/72-20x0

2 группы контактов , 8 А - Материал контактов AgCdO Винтовые и зажимные варианты клемм Установка на 35-мм рейку (EN 60715)

См. чертеж на стр. 8
Характеристика контактов
Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение
Номинальнан нагрузка AC1
Номинальная нагрузка (230 B~) AC15 BA
Допуст. мощность однофазного двигателя (230 B-) kBт

Отключающая способность DC1:30/110/220 B A
Минимальный ток переключения мВт(B/мA)

Стандартный материал контакта
Характеристики катушки
Номин. напряж. $\left(U_{N}\right) \quad$ V AC (50/60 ГL)

| Ном. мощн. AC/DC/Чувствит. DC VA $(50 \mathrm{~Hz}) / \mathrm{WN}$ |
| :--- | :--- |
| Рабочий диапазон |

	DC/Чувствит. DC
Напряжение удержания	AC/DC
Напряжение откпючения	AC/DC

Напряжение отключения \quad AC/DC	
Технические параметры	

Механическая долговечность $\mathrm{AC/DC}$ циклов
Электр. договечность при ном. нагрузке $\mathrm{AC1}$ циклов

Время вкл/выкл мо

Изоляция между катушкой и контактами (1.250 $\mu \mathrm{s}$) kB
Эгектринескаяпронность междуоккрьтымиконтактами VAC
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$
Категория защиты
Сертификация (в соответствии с типом)

7.xxx. 0050 9.xxx. 0050

2 перекидных KOHTaKTa(DPDT)
DC
7.xxx. 0050 9.xxx. 0050

AC
8.xxx0060

-

49 Серия - Интерфейсные модули реле 8-10-16 А

Характеристики

Интерфейсные Модули Реле с 1 группой контактов
Контакты из AgCdO для тяжелого режима раб.
49.61-20x0-1 Pole 16 A (Винтовой зажим)
49.81-20x0-1 Pole 16 A (Пружинный зажим)

Контакты из AgSnO_{2} для тяжелого режима работы, для пусковой коммутации сильного тока
49.61-40x0-1 Pole 16 A (Винтовой зажим)
49.81-40x0-1 Pole 16 A (Пружинный зажим)

ширина одного модуля 15.5 мм
Идеальный интерфейс для ПЛК и
электронных систем
Катушки $A C$ или DC
Моментальное извлечение реле с использованием пластикового удерживающего зажима
Индикация состояния источника питания и модуль подавления электромагнитного импульса
Идентификационный номер
Установка на 35-мм рейку (EN 60715)

49.61

Винтовой зажим

49.81-20x0/40x0 Пружинный зажим

См. чертеж на стр. 8

Характеристика контактов

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток

Ном. напряжение/Макс. напряжение	B~
Номинальная нагрузка AC1	BA

Номинальная нагрузка ($230 \mathrm{~B} \sim$) AC15 BA
Допуст. мощность однофазного двигателя (230 B~) kBт
Отключающая способность DC1: 30/110/220 B A
Минимальный ток переключения мВт(B/мA)
Стандартный материал контакта
Характеристики катушки
Номин. напряж. $\left(\mathrm{U}_{\mathrm{N}}\right) \quad \mathrm{V}$ AC $(50 / 60$ Гц)
Ном. мощн. AC/DC/Чувствит. DC VA $(50 \mathrm{~Hz})$ /WN
Рабочий диапазон AC

	DC/Чувствит. DC
Напряжение удержания	AC/DC
Напряжение отключения	AC/DC

Технические параметры
Механическая долговечность $\mathrm{AC} / \mathrm{DC}$ циклов
Электр. договечность при ном. нагрузке АС1 циклов
Время вкл/выкл м м
Изоляция между катушкой и контактами $(1.2 / 50 \mu \mathrm{~s}) \mathrm{kB}$
Электриескадпронностьмеждуоткрыпымиконпактами VAC
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$
Категория защиты
Сертификация (в соответствии с типом)

49.61/81-20x0

1 группа контактов , 16 A *
Материал контактов AgCdO
Винтовые и зажимные варианты клемм Установка на 35-мм рейку (EN 60715)

AC
8.xxx0060
7.xxx. 0050 9.xxx. 0050

* Для тока > 10 A , контактные клеммы должны соединяться параплельно (21 с 11,24 с 14, 22 с 12).

1 перекидной контакт (SPDT)

A	
B	
A	
A	
BT	
A	
A)	

250
4,00
0
\square
\square
0.55
$+$
$16 / 0.3 / 0.12$
$500(5 / 5)$
AgCdO

1 группа контактов , 16 А *
Материал контактовAgSnO 2
Винтовые и зажимные варианты клемм Установка на 35-мм рейку (EN 60715)

 ${ }^{c o m}$ no
nc

AC
DC
8.xxx0060 7.xxx. 0050
9.xxx. 0050

* Для тока > 10 А , контактные клеммы должны соединяться параплельно (21 с 11,24 с 14, 22 с 12).

1 перекидной контакт (SPDT)
$16 * / 100(5 \mathrm{~ms})$
$250 / 400$ 4,000
\square

Информация по заказам

Пример: 49 серия, монтаж на рейку 35 мм (EN 60715), интерфейсный модуль реле с винтовыми клеммами, 2 перекидных контакта CO (DPDT) 8 А, чувствительная катушка 24 V DC, зеленый светодиод + диод, индикация катушки 99.80.

Тип катушки

7 = Чувствит. DC (500 mW)

8 = AC (50/60 Гц)
9 = DC (650 mW)

Напряжение катушки

См. характеристики катушки

Выбор характеристик и опций: возможны комбинации только в одном ряду. Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	A	B	C	D
$49.31 / 52 / 72$	AC	$\mathbf{0 - 2 - 5}$	0	$\mathbf{6}$	0
$49.31 / 52 / 72$	DC - Чувств. DC	$\mathbf{0}-2-5$	0	$\mathbf{5}$	0
$49.61 / 81$	AC	$\mathbf{0}-4$	0	$\mathbf{6}$	0
$49.61 / 81$	DC - Чувств. DC	$\mathbf{0}-4$	0	$\mathbf{5}$	0

Технические параметры

Изоляция		49.31/61	49.52/72	49.31/61/81	
Изоляция в соответствии с	Номинальное напряжение изоляции В	250	250	400	
EN 61810-1	Номинальное напряжение пробоя кВ	4	4	4	
	Уровень загрязнения	3	2	2	
	Категория перегрузки	III	III	III	
Изоляция между катушкой и контактами (1.2/50 мкс) кВ		$6(8 \mathrm{~mm})$			
Электрическоя прочность между открытыми контоктами VAC		1,000			
Электрическая прочноеть между соседними контактами VAC		2,000 (49.52/72)			
Устойчивость к перепадам					
Разрыв (5...50) нс, 5 кГц, на А 1 -А2		EN 61000-4-4		уровень 4 (4 kV)	
Импульс (1.2/50 мкс) на А 1 -А2 (при дифференциальном включении)		EN 61000-4-5		уровень 3 (2 kV)	
Прочее					
Время дребезга: НО/НЗ мс		2/5			
Виброустойчивость (5...55)Гц: НО/НЗ g		10/4 (для 1 полюса)		15/3 (для 2 полюсов)	
Потери мощнасти	без нагрузки Вт	0.7			
	при номинальном токе Вт	$1.2(49.31 / 61 / 81)$		$1.3(49.52 / 72)$	
Длина зачистки провода мм		8			
(4ㄱ) Момент завинчивания Нм		0.5			
Макс. размер провода		Винтовой зажим		Пужинный зажим	
		одножильный провод	многожильный провод	одножильный провод	Многожильный провод
	M M^{2}	1x6/2x2.5	1x4 / 2x2.5	2x(0.2...1.5)	2x(0.2...1.5)
	AWG	$1 \times 10 / 2 \times 14$	1x12 / 2x14	2x(24...18)	2x(24...18)

Характеристика контактов

F 49 - Электрическая долговечность (АС) при ном. нагрузке, Типы 49.31/61/81

F 49 - Электрическая долговечность (АС) при ном. нагрузке, Типы 49.52/72

H 49 - Макс. отключающая способность DC1, Типы 49.31/52/61/72/81

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1. Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики катушки
араметры чувств. катушки D (0.5 W)

	Код	Рабочий диапазон		Погпощающ.
U_{N}		$\mathrm{U}_{\text {min }}{ }^{*}$	$\mathrm{U}_{\text {max }}{ }^{* *}$	I при U_{N}
B		B	B	MA
12	7.012	8.8	21	41
24	7.024	17.5	42	22.2
125	7.125	91.2	219	4

${ }^{*} U_{\text {min }}=0.8 U_{N}$ для 49.61 и 49.81
${ }^{* *} U_{\max }=1.5 U_{N}$ для 49.61 и 49.81

Параметры катушки DC (0.65 W)

	Код	Рабочий диапазон		Погпощающ.
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	I при U_{N}
B		B	B	MA
12	9.012	8.8	18	56
24	9.024	17.5	36	29
125	9.125	91.2	188	6

R 49 - Отношение рабочего диапазона для DC к температуре окр. среды - Стандартный (650 mW)

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

R 49 - Отношение рабочего диапазона для DC к температуре окр. среды - Чувствительные катушки (500 mW)

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Параметры катушки АС

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Поппощающ. способность
$\mathrm{B} п п и \mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz})$				

R 49 - Отношение рабочего диапазона для AC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Обозначение	Тип розетки	Тип реле	Модуль	Крепежный зажим
49.31	95.93 .3	40.31	99.80	095.91 .3
49.52	95.95 .3	40.52	99.80	095.91 .3
49.61	95.95 .3	40.61	99.80	095.91 .3
49.72	95.55 .3	40.52	99.80	095.91 .3
49.81	95.55 .3	40.61	99.80	095.91 .3

Контурный чертеж

Аксессуары

095.08	8-ми полюсный шинный соединитель Версия для винтовых клемм	095.08 (синий)	095.08 .0 (черный)
	Номинальные значения	$10 \mathrm{~A}-250 \mathrm{~V}$	
	Блок маркировок, пластик, 72 знака, 6х12 мм	060.72	

060.72

Коды на упаковке

Кодировка зажимов и упаковки розеток.

Варианты кодировки обозначаются тремя последними буквами:

А Стандартная упаковка
B В Блистерная упаковка

Характеристики

Интерфейсные Модули Реле с 1 и 2 группами контактов, розетки с винтовым зажимом, ширина 15.8 мм
Идеальный интерфейс для программируемых контроллеров и электронных систем

4С. 01 - 1 группа контактав, 16 A
4С. 02-2 группы контактов, 8 A

- Катушки $A C$ или $D C$
- Мгновенное извлечение реле с помощью пластикового зажима
- Индикация состояния питания и модуль подавления электромагнитных импульсов
Идентификационный номер
- Сертифицировано UL
- Установка на 35-мм рейку (EN 60715)

4C. 01 / 4C. 02

Винтовой зажим

См. чертеж на стр. 5
Характеристика контактов
Контактная группа (конфигурация)

Номинальный ток/Макс. пиковый ток А	16/25	8/15
Ном. напряжение/Макс. напряжение B~	250/440	250/440
Номинальная нагрузка AC1 BA	4,000	2,000
Номинальная нагрузка (230 B~) AC15 BA	750	350
Допуст. мощность однофазного двигателя (230 B-) kBт	0.55	0.37
Отключающая способность DC1: 30/110/220 В A	16/0.5/0.15	6/0.5/0.15
Минимальный ток переключения мВт(B/MA)	300 (5/5)	300 (5/5)
Стандартный материал контакта	AgNi	AgNi
Характеристики катушки		
Номин. напряж. (U_{N}) V AC (50/60 Гц)	12-24-110-120-230	12-24-110-120-230
V DC	12-24-125	12-24-125
Ном. мощн. AG/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$	1.2/0.5	1.2/0.5
Рабочий диапазон AC	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
DC	$(0.73 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	(0.73..1.1) U_{N}
Напряжение удержания AC/DC	$0.8 \mathrm{U}_{\mathrm{N}} / 0.4 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.4 \mathrm{U}_{\mathrm{N}}$
Напряжение отключения AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Технические параметры		
Механическая долговечность AC/DC циклов	$10 \cdot 10^{6}$	$10 \cdot 10^{6}$
Электр. договечность при ном. нагрузке АС1 циклов	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Время вкл/выкл MC	15/5 (AC) - 15/12 (DC)	10/3 (AC) - 10/10 (DC)
Изоляция между катушкой и контактами (1.2/50 $\mu \mathrm{s}$) kB	6 (8 mm)	6 (8 mm)
Электриескаяпроностьмеждуоткрьпымиконтактамм VAC	1,000	1,000
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	$\leq 12 \mathrm{~A}:-40 \ldots+70 />12 \mathrm{~A}:-40 \ldots+50$	$-40 \ldots+70$
Категория защиты	IP 20	IP 20
Сертификация (в соответствии с типом)	CE S滑	$c{ }^{-1} \mathrm{l}_{\text {US }} \mathrm{OD}_{5}$

DC

AC

DC

AC

Характеристики

Интерфейсные Модули Реле с 1 и 2 группами контактов, розетки с винтовым зажимом, ширина 15.8 мм
Идеальный интерфейс для программируемых контроллеров и электронных систем

4С.51-1 группа контактав 10 A
4С.52-2 группы контактов 8 A
Катушки $A C$ или DC
Мгновенное извлечение реле с помощью пластикового зажима
Индикация состояния питания и модуль подавления электромагнитных импульсов
Идентификационный номер
Сертифицировано UL
Установка на 35-мм рейку (EN 60715)

4С. 51 / 4C. 52

Пружинный зажим

См. чертеж на стр. 5
Характеристика контактов
Контактная группа (конфигурация)

Номинальный ток/Макс. пиковый ток А	10/20	8/15
Ном. напрнжение/Макс. напряжение B~	250/440	250/440
Номинальная нагрузка AC1 BA	2,500	2,000
Номинальная нагрузка (230 B~) AC15 BA	750	350
Допуст. мощность однофазного двигателя (230 В) kBт	0.55	0.37
Отключающая способность DC1: 30/110/220 B A	10/0.5/0.15	6/0.5/0.15
Минимальный ток переключения мВт(B/мA)	300 (5/5)	300 (5/5)
Стандартный материал контакта	AgNi	AgNi
Характеристики катушки		
Номин. напряж. (U_{N}) V $\mathrm{VAC}^{\text {(50/60 Гц) }}$	12-24-110-120-230	12-24-110-120-230
V DC	12-24-125	12-24-125
Ном. мощн. AC/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$	1.2/0.5	1.2/0.5
Рабочий диапазон AC	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
DC	$(0.73 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.73 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
Напряжение удержания AC/DC	$0.8 \mathrm{U}_{\mathrm{N}} / 0.4 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.4 \mathrm{U}_{\mathrm{N}}$
Напряжение отключения AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Технические параметры		
Механическая долговечность AC/DC циклов	$10 \cdot 10^{6}$	$10 \cdot 10^{6}$
Электр. договечность при ном. нагрузке AC1 циклов	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Время вкл/выкл мс	15/5 (AC) - 15/12 (DC)	10/3 (AC) - 10/10 (DC)
Изоляция между катушкой и контактами (1.250 s) kB	6 (8 mm)	6 (8 mm)
Электринескаяпроннстьмеждуоткьпымиконтактами VAC	1,000	1,000
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-25...+70	-25...+70
Категория защиты	IP 20	IP 20
Сертификация (в соответствии с типом)		${ }_{c} \mathrm{AI}_{\text {US }}^{\circ} \mathrm{O}_{\mathrm{DE}}^{\mathrm{D}}$

- 1 группа контактов, 10 A Пружинный зажим Установка на 35-мм рейку (EN 60715)

DC

AC

DC

D

2 группы контактов, 8 A - Пружинный зажим Установка на 35-мм рейку (EN 60715)

4C. 52

Информация по заказам

Пример: 4G серия, монтаж на рейку 35 мм (EN 60715), интерфейсный модуль реле с винтовыми клеммами, 1 перекидной контакт (SPDT) 16 A, чувствительная катушка 24 VDC , зеленый светодиод + диод, индикация катушки.

$2=2$ контакта

Тип катушки

$8=A C(50 / 60 Г ц)$
$9=D C$
Напряжение катушки
См. характеристики катушки
Выбор характеристик и опций: возможны комбинации только в одном ряду. Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
4C.02	AC	$\mathbf{0}-5$	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{0}$
4C.52	DC	$\mathbf{0}-5$	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{0}$
4 C .01	AC	$\mathbf{0}-4-5$	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{0}$
$4 \mathrm{4C.51}$	DC	$\mathbf{0}-4-5$	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{0}$

Технические параметры

Характеристика контактов

F 4C - Электрическая долговечность (AC) при ном. нагрузке, Типы 4С.02/52

F 4C - Электрическая долговечность (АС) при ном. нагрузке, Типы 4С.01/51

H 4C - Макс. отключающая способность DC1

(*) Типы $4 \mathrm{C} .01=12 \mathrm{~A}$, Типы $4 \mathrm{C} \cdot 51=10 \mathrm{~A}$

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DG1. Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики катушки

Параметры катушки DC

Параметры катушки АС

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Сопротивл.	Погпощающ.
способность					

	Код катушки	Рабочий диапазон		Сопротивл.	Погпощающ.
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	I при U_{N}
B		B	B	Ω	MA
12	8.012	9.6	13.2	80	90
24	8.024	19.2	26.4	320	45
110	8.110	88	121	6,900	9.4
120	8.120	96	132	9,000	8.4
230	8.230	184	253	28,000	5

R 4C - Отношение рабочего диапазона для AC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

R 4C - Отношение рабочего диапазона для DC к температуре окр. среды

4С Серия - Интерфейсные модули реле 8-10-16 А

Комбинации	Обозначение	Тип розетки	Тип реле	Модуль	Крепежный зажим
	4C. 01	97.01	46.61	99.02	097.01
-(1) us Согласно Определенные	4C. 02	97.02	46.52	99.02	097.01
	4C. 51	97.51	46.61	99.02	097.01
	4C. 52	97.52	46.52	99.02	097.01

Определенные комбинации реле/розеток

Контурный чертеж

4C. 01 / 4C. 02
Винтовой зажим

Аксессуары

8-ми полюсный шинный соединитель для 4С. 01 и 4С. 02
095.18 (синий)
$10 \mathrm{~A}-250 \mathrm{~V}$
(

Блок маркировок, пластик, 72 знака, 6×12 мм

Пружинный зажим

Коды на упаковке

Кодировка зажимов и упаковки розеток.
Варианты кодировки обозначаются тремя последними буквами:

58 Серия - Интерфейсные модули реле 7-10 A

Характеристики

Интерфейсные модули реле с 2, 3 и 4 группами контактов, ширина - 27 мм.
Идеальный интерфейс дла програм. контроллеров и электронных систем
58.32-2 полюса 10 A (Винтовой зажим) 58.33-3 полюса 10 A (Винтовой зажим) 58.34-4 полюса 7 A (Винтовой зажим)

Катушки AC или DC
Индикация состояния источника питания и модуль подавления электромагнитного импульса - стандарт
Идентификационный номер
Материал контактов - бескадмиевый По классификации UL
Установка на 35 -мм рейку (EN 60715)

58.32 / 58.33 / 58.34
 Винтовой зажим

2 перекидных контакта, 10 A Винтовой зажим
Установка на 35-мм рейку (EN 60715)
58.33

3 перекидных контакта, 10 A Винтовой зажим Установка на 35-мм рейку (EN 60715)
58.34

4 перекидных контакта, 7 А Винтовой зажим
Установка на 35-мм рейку (EN 60715)

Пример: AC

Пример: DC

См. чертеж на стр. 4

Характеристика контактов

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток

Ном. напряжение/Макс. напряжение

Номинальная нагрузка AC1
Номинальная нагрузка (230 B~) AC15 BA
Допуст. мощность однофазного двигателя ($230 \mathrm{~B} \sim$) kBT
Отключающая способность DC1: 30/110/220 B A
Минимальный ток переключения мВт(B/MA)
Стандартный материал контакта
Характеристики катушки

Категория защиты

Сертификация (в соответствии с типом)

Информация по заказам

Пример: 58 серия, монтаж на рейку 35 мм (EN 60715), интерфейсный модуль реле с винтовыми клеммами, 4 перекидных контакта (4РDT), чувствительная катушка 24 V DC, зеленый светодиод + диод.
Тип

$3=$ Винтовой зажим,
Установка на 35 мм рейку
Кол-во контактов
$2=2$ полюса, 10 A
$3=3$ полюса, 10 A
$4=4$ полюса, 7 A

Тип катушки
$8=A C(50 / 60$ Гц)
$9=\mathrm{DC}$
Напряжение катушки
См. характеристики катушки
Выбор характеристик и опций: возможны комбинации только в одном ряду. Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	A	B	C	D
$58.32 / 33 / 34$	AC	$\mathbf{0 - 2 - 5}$	0	$\mathbf{6}$	0
$58.32 / 33 / 34$	DC	$\mathbf{0 - 2 - 5}$	0	$\mathbf{5}$	0

Технические параметры

Изоляция			
Изоляция в соответствии с	Номинальное напряжение изоляции В	400 (2-3 полюса)	250 (4 полюса)
EN 61810-1	Номинальное напряжение пробоя кВ	3.6 (2-3 полюса)	2.5 (4 полюса)
	Уровень загрязнения	2	2
	Категория перегрузки	III	II
Изоляция между катушкой и контактами (1.2/50 мкс) кВ		3.6	
Электрическая прочность между открытыми контактами VAC		1,000	
Электрическая прочноеть между соседними контактами V AC		2,000 (58.32,58.33)	1,550 (58.34)
Устойчивость к перепадам			
Разрыв (5...50)нс, 5 кГц, на А 1 -А2		EN 61000-4-4	уровень 4 (4 kV)
Импульс (1.2/50 мкс) на А 1 -А2 (при диффференциальном включении)		EN 61000-4-5	уровень 4 (4 kV)
Прочее			
Время дребезга: НО/Н3 MC		1/3	
Виброустойчивость (10...55)Гц: НО/Н3 g		6/6	
Потери мощнасти	без нагрузки Вт	1	
	при номинальном токе Вт	3 (58.32, 58.34)	4 (58.33)
Длина зачистки провода M		8	
(4) Момент завинчивания		0.5	
Макс. размер провода	MM ${ }^{2}$	одножильный провод	многожильный провод
		1x6 / 2x2.5	1x4 / 2x2.5
	AWG	1x10/2x14	1x12 / 2x14

Характеристика контактов

F 58 - Электрическая долговечность (АС) при ном. нагрузке,
Реле с 2 и 3 перекидными контактами

H 58 - Макс. отключающая способность DC1

Характеристики катушки

Параметры катушки DC

R 58 - Отношение рабочего диапазона для DC к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

F 58 - Электрическая долговечность (АС) при ном. нагрузке, Реле с 4 перекидными контактами

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1.
Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Параметры катушки АС

Номин. напряж. U_{N}	Код катушки	Рабочий диапазон		Сопротивл. R	Погпощающ. способность$\mathrm{I}^{\mathrm{I} P и U_{N}(50-\mathrm{z})}$
		$\mathrm{U}_{\text {min }}$			
B		B	B	Ω	mA
12	8.012	9.6	13.2	50	97
24	8.024	19.2	26.4	190	53
48	8.048	38.4	52.8	770	25
110	8.110	88	121	4,000	12.5
120	8.120	96	132	4,700	12
230	8.230	184	253	17,000	6

R 58 - Отношение рабочего диапазона для АС к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

58 Серия - Интерфейсные модули реле 7-10 A
Комбинации

Согласно
спецификации:
Определенные комбинации реле/розеток

Обозначение	Тип розетки	Тип реле	Модуль	Крепежный зажим
58.32	94.02	55.32	99.02	094.91 .3
58.33	94.03	55.33	99.02	094.91 .3
58.34	94.04	55.34	99.02	094.91 .3

Контурный чертеж

58.32 Винтовой зажим

58.33 Винтовой зажим

58.34

Винтовой зажим

Аксессуары

6-ми полюсный шинный соединитель	094.06 (синий)	094.06 .0 (черный)
Номинальные значения	$10 \mathrm{~A}-250 \mathrm{~V}$	

Блок маркировок, пластик, 72 знака, 6×12 мм

Коды на упаковке

Кодировка зажимов и упаковки розеток.
Варианты кодировки обозначаются тремя последними буквами:

(1) finder

Характеристики

Интерфейсные модули реле с 2 и 4 группами контактов, ширина - 27 мм.
Идеальный интерфейс для програм. контроллеров и электронных систем 59.32-2 полюс 10 A (Винтовой зажим) 59.34-4 полюса 7 A (Винтовой зажим) 59.54-4 полюса 7 A (Пружинный зажим)

Катушки AC или DC
Индикация состояния источника питания и модуль подавления электромагнитного импульса - стандарт
Идентификационный номер
Материал контактов - бескадмиевый
Установка на 35 -мм рейку (EN 60715)

2 перекидных контакта, 10 A Винтовой зажим
Установка на 35-мм рейку (EN 60715)
59.34

4 перекидных контакта, 7 A Винтовой зажим Установка на 35 -мм рейку (EN 60715)
59.54

4 перекидных контакта, 7 А
Пружинный зажим
Установка на 35-мм рейку (EN 60715)

COIL

Пример: AC

正

Пример: DC

COIL

Пример: AC

Характеристика контактов

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток А
Ном. напряжение/Макс. напряжение
Номинальная нагрузка AC1
Номинальная нагрузка ($230 \mathrm{~B} \sim$) AC15 BA
Допуст. мощность однофазного двигателя (230 B - кBт
Отключающая способность DC1: 30/110/220 B A
Минимальный ток переключения мВт(B/МА)
Стандартный материал контакта
Характеристики катушки

Категория защиты

Сертификация (в соответствии с типом)

Информация по заказам

Пример: 59 серия, монтаж на рейку 35 мм (EN 60715), интерфейсный модуль реле с винтовыми клеммами, 4 перекидных контакта (4РDT), чувствительная катушка 24 VDC , зеленый светодиод + диод.

$4=4$ полюса, 7 А
Тип катушки
$8=$ АС (50/60 Гц)
9 = DC
Напряжение катушки
См. характеристики катушки

Выбор характеристик и опций: возможны комбинации только в одном ряду. Предпочтительные варианты выделены жирным шрифтом.

Тип	Питание катушки	A	B	C	D
$59.32 / 33 / 34 / 54$	AC	$\mathbf{0 - 2 - 5}$	0	$\mathbf{6}$	0
$59.32 / 33 / 34 / 54$	DC	$\mathbf{0 - 2 - 5}$	0	$\mathbf{5}$	0

Технические параметры

Изоляция					
Изоляция в соответствии с EN 61810-1	Номинальное напряжение изоляции В	400 (2 полюса)		250 (4 полюса)	
	Номинальное напряжение пробоя кB	3.6 (2 полюса)		2.5 (4 v)	
	Уровень загрязнения	2		2	
	Категория перегрузки	III		II	
Изолнция между катушкой и контактами (1.2/50 мкс) кВ		3.6			
Электрическая прочность между открытыми контактами VAC	у открытыми контактами VAC	1,000			
Электрическая прочноеть между соседними контактами V AC		2,000 (59.32)		1,550 (59.34/54)	
Устойчивость к перепадам					
Разрыв (5..50)нс, 5 кГц, на А 1 -А2		EN 61000-4-4		уровень 4 (4 kV)	
Импульс (1.2/50 мкс) на А 1 -А2 (при диффференциальном включении)		EN 61000-4-5		уровень 4 (4 kV)	
Прочее					
Время дребезга: НО/Н3 mc		1/3			
Виброустойчивость (10...55)Гц: НО/НЗ g		6/6			
Потери мощнасти	без нагрузки Bt	1			
	при номинальном токе $\mathrm{B}^{\text {т }}$	3			
		59.32/34 (Винтовой зажим)		59.54 (Пружинный зажим)	
Длина зачистки провода	MM	8		8	
(f)ㄲ) Момент завинчивания	Hm	0.5		-	
Макс. размер провода		одножильный провод	многожильный провод	одножильный провод	Многожильный провод
	MM ${ }^{2}$	1x6 / 2x2.5	1x4/2x2.5	1×2.5	1×1.5
	AWG	$1 \times 10 / 2 \times 14$	1x12 / 2x14	1×14	1×16

Характеристика контактов

F 59 - Электрическая долговечность (АС) при ном. нагрузке, Реле с 2 перекидными контоктоми

F 59 - Электрическая долговечность (АС) при ном. нагрузке, Реле с 4 перекидными контоктоми

H 59 - Макс. отключающая способность DC1

- При переключении активной нагрузки (DC1) и величине тока и напряжения ниже приведенных выше кривых долговечность составляет $100 \cdot 10^{3}$ циклов.
- При тройной нагрузке DC13 подключение диода параллельно с нагрузкой даст долговечность, как при нагрузке DC1. Примечание: Время срабатывания под нагрузкой можно будет увеличить.

Характеристики катушки

Параметры катушки DC

Номин.	Код	Рабочий диапазон		Сопротивл.	Погпощающ.
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	I при U_{N}
B		B	B	Ω	mA
12	9.012	9.6	13.2	140	86
24	9.024	19.2	26.4	600	40

R 59 - Отношение рабочего диапазона для DC к температуре окр. среды

1 - Макс. Допустимое напрнжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

Параметры катушки АС

Номин.	Код катушки	Рабочий диапазон		Сопротивл.	Погпощающ.
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	$\boldsymbol{I п р и ~} \mathrm{U}_{\mathrm{N}}(50 \mathrm{~F} \mathrm{z}$)
B		B	B	Ω	mA
12	8.012	9.6	13.2	50	97
24	8.024	19.2	26.4	190	53
230	8.230	184	253	17,000	6

R 59 - Отношение рабочего диапазона для АС к температуре окр. среды

1 - Макс. Допустимое напряжение на катушке.
2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

59 Серия - Интерфейсные модули реле 7-10 A
Комбинации

Обозначение	Тип розетки	Тип реле	Модуль	Крепежный зажим
59.32	94.94 .3	55.32	99.80	094.91 .3
59.34	94.94 .3	55.34	99.80	094.91 .3
59.54	94.54 .1	55.34	99.80	094.92

Аксессуары

060.72

Блок маркировок для пластмассовых клипс 094.91
пластик, 24 знака, 9×17 мм

020.24

Коды на упаковке

Кодировка зажимов и упаковки розеток.

Варианты кодировки обозначаются тремя последними буквами:
59.
. 3 \square . 9 .
0 0 4 0 0 $\begin{array}{lllll}5 & 0 & S & P & \\ & & \\ & \end{array}$ A

99 Серия - Модули индикации катушки и подавления электромагнитных помех

	Розетки	\square Реле				
	90.20	60.12	90.02	60.12	94.54.1	55.32, 55.34
	90.21	60.13	90.03	60.13	94.82 .3	55.32
	94.72	55.32	92.03	62.32, 62.33	94.84 .3	55.32, 55.34
	94.73	55.33	94.02	55.32	84.84 .2	55.32, 55.34
	94.74	55.32, 55.34	94.03	55.33	94.92.3	55.32
	94.82	55.32	94.04	55.32, 55.34	94.94.3	55.32, 55.34
	95.63	40.31	95.03	40.31	95.55.3	40.51/52/61
	96.72	56.32	95.05	40.51/52/61		44.52, 44.62
	96.74	56.34		44.52, 44.62	95.83.3	40.31
			95.55	40.51/52/61	95.85.3	40.51/52/61
				44.52, 44.62		44.52/62
			96.02	56.32	$95.95 .3$	40.31
			96.04	56.34		40.51/52/61
			97.01/97.51	46.61		44.52, 44.62
			97.02/97.52	46.52		
ФУНКЦИИ / РАБОЧИЙ ДИАПАЗОН	ОБОЗНАЧЕНИЕ		ОБОЗНАЧЕНИЕ			ОЗНАЧЕНИЕ
зеленый светодиод + диод(прямой полярности)						
$\begin{array}{r} 6-24 V D C \\ 28-60 V D C \\ 110-220 \vee D C \end{array}$	$\begin{aligned} & 99.01 .9 .024 .99 \\ & 99.01 .9 .060 .99 \\ & 99.01 .9 .220 .99 \end{aligned}$		99.02.9.024.99 99.02.9.060.99 99.02.9.220.99			$\begin{aligned} & 9.80 .9 .024 .99 \\ & 9.80 .9 .060 .99 \\ & 9.80 .9 .220 .99 \end{aligned}$
зеленый светодиод + диод (обратной полнрности)						
$\begin{array}{r} 6-24 \text { V DC } \\ 28-60 \text { V DC } \\ 110-220 \text { V DC } \end{array}$	$\begin{aligned} & 99.01 .9 .024 .79 \\ & 99.01 .9 .060 .79 \\ & 99.01 .9 .220 .79 \end{aligned}$		$\begin{aligned} & 99.02 .9 .024 .79 \\ & 99.02 .9 .060 .79 \\ & 99.02 .9 .220 .79 \end{aligned}$			$\begin{aligned} & 9.80 .9 .024 .79 \\ & 9.80 .9 .060 .79 \\ & 9.80 .9 .220 .79 \end{aligned}$
зеленый светодиод + Варистор						
$\begin{array}{r} 6-24 \mathrm{~V} \mathrm{AC/DC} \\ 28-60 \mathrm{~V} \mathrm{AC/DC} \\ 110-240 \mathrm{~V} \mathrm{AC/DC} \end{array}$	$\begin{aligned} & 99.01 .0 .024 .98 \\ & 99.01 .0 .060 .98 \\ & 99.01 .0 .230 .98 \end{aligned}$		$\begin{aligned} & 99.02 .0 .024 .98 \\ & 99.02 .0 .060 .98 \\ & 99.02 .0 .230 .98 \end{aligned}$			$\begin{aligned} & 9.80 .0 .024 .98 \\ & 9.80 .0 .060 .98 \\ & 9.80 .0 .230 .98 \end{aligned}$
Зеленый светодиод						
$\begin{array}{r} 6-24 \text { V AC/DC } \\ 28-60 \text { V AC/DC } \\ 110-240 \text { V AC/DC } \end{array}$	$\begin{aligned} & 99.01 .0 .024 .59 \\ & 99.01 .0 .060 .59 \\ & 99.01 .0 .230 .59 \end{aligned}$		99.02.0.024.59 99.02.0.060.59 99.02.0.230.59			$\begin{aligned} & 9.80 .0 .024 .59 \\ & 9.80 .0 .060 .59 \\ & 9.80 .0 .230 .59 \end{aligned}$
Защитный диод (прямой полярности)						
6-220 V DC	99.01.3.000.00		99.02.3.000.00		99.80.3.000.00	
Защитный диод (обратной полярности)						
6-220 V DC	99.01.2.000.00		99.02.2.000.00			9.80.2.000.00
Модуль RC-цепи						
$\begin{array}{r} 6-24 \mathrm{~V} \mathrm{AC} / D C \\ 28-60 \mathrm{~V} \mathrm{AC} / D C \\ 110-240 \mathrm{~V} \mathrm{AC} / D C \end{array}$	99.01.0.024.09 99.01.0.060.09 99.01.0.230.09		99.02.0.024.09 99.02.0.060.09 99.02.0.230.09			$\begin{aligned} & 9.80 .0 .024 .09 \\ & 9.80 .0 .060 .09 \\ & 9.80 .0 .230 .09 \end{aligned}$
Шунтирующий модуль						
110-240 V AC	99.01.8.230.07		99.02.8.230.07		99.80.8.230.07	

Вольт-амперная характеристика при коммутации резистивной нагрузки (рис.1)

Вольт-амперная характеристика при коммутации катушки реле (рис.2)

Коммутация катушек реле.

При коммутации резистивной нагрузки, ток имеет линейную зависимость от напряжения (рис.1).

При коммутации катушек реле, форма сигнала по току и напряжению различны, что связано с индуктивной природой катушки (рис.2). Краткое объяснение данных механизмов.

При подаче напряжения на катушку образуются электродвижущая сила, и нарастание тока проистекает с задержкой по времени. При прекращении подачи напряжения на катушку происходит скачкообразное уменьшение величины магнитного поля, которое в свою очередь, вызывает всплеск напряжения обратной полярности на катушке. Этот всплеск может достигать значений, в 15 раз превышающих номинальное напряжение, что может помешать нормальной работе электронных устройств, вплоть до их разрушения.

Для предотвращения этих эффектов катушки реле комплектуются диодами, варисторами (резистор, сопротивление которого зависит от приложенного к нему напряжения) или RG-цепями, в зависимости от рабочего напряжения. (См. ниже функциональное описание модулей).

Вышеизложенное описание справедливо для катушек постоянного тока, однако, для катушек переменного тока. аналогичные всплески напряжения обратной полярности при прекращении подачи электропитания также имеют место. При замыкании контакта на катушке переменного тока, значение пускового тока может быть от 1.3 до 1.7 раз превышать значения номинального тока, в зависимости от номинала катушки. Если питание на катушки подается через трансформатор (особенно, если питание подается одновременно на несколько катушек), то это нужно учесть при расчете мощности трансформатора.

Функции

Зеленый светодиод + диодный модуль (прямая полярность).
Диодные модули + светодиодный индикатор используются только для цепей DC. Пики обратного напряжения на катушке гасятся с помощью диода ("+" на клемме A1). Время спада увеличивается примерно в 3 раза. Если увеличение времени спада нежелательно, используйте варистор или RC-модуль.
Светодиодный индикатор загорается при подаче питания на катушку.

Зеленый светодиод + диодный модуль (обратная полярность).
Диодные модули + светодиодный индикатор используются только для цепей DC. Пики обратного напряжения на катушке гасятся с помощью диода ("+" на клемме А2). Время спада увеличивается примерно в 3 раза. Если увеличение времени спада нежелательно, используйте варистор или RC-модуль.
Светодиодный индикатор загорается при подаче питания на катушку.
Зеленый светодиод + варистор
Светодиодные модули + варистор используются для катушек AC и DC. Пики обратного напряжения на катушке гасятся примерно в 2.5 раза от значения номинального напряжения. При использовании катушек DC, "+" подается на клемму A1. Время спада увеличивается незначительно.

Зеленый светодиод

Модули с зеленым светодиодом используются в цепях AC и DC.
Светодиодный индикатор загорается при подаче питания на катушку. При использовании в цепях DC, "+" подается на клемму A1.

Диодный модуль (прямая полярность)
Диодные модули + светодиодный индикатор используются только для цепей DC. Пики обратного напряжения на катушке гасятся с помощью диода ("+" на клемме А1). Время спада увеличивается примерно в 3 раза. Если увеличение времени спада нежелательно, используйте варистор или RC-модуль.

Диодный модуль (обратная полярность)
Диодные модули + светодиодный индикатор используются только для цепей DC. Пики обратного напряжения на катушке гасятся с помощью диода ("+" на клемме А2). Время спада увеличивается примерно в 3 раза. Если увеличение времени спада нежелательно, используйте варистор или RC-модуль.

Модупь RC-цепи

Модупи RC-цепей применяются для цепей AC и DC .
Пики обратного напряжения на катушке гасятся с помощью RC -модуля примерно в 2.5 раза о значения номинального напряжения. Время спада увеличивается незначительно.

Шунтирующий модуль

Шунтирующие модули рекомендуется применять, если катушки реле 110 230 V AC имеют тенденцию не выходить из зацепления, что может быть вызвано остаточными токами от бесконтактных переключателей или индуктивными связями, возникающими в контрольных кабелях с рабочим напряжением $A C$, и проложенных параллельно на большом расстоянии.

Характеристики

Модули управления Авто/Выкл/Вкл 10 А

Модули управления Авто/Выкл/Вкл предназначены для автоматического управления насосами, вентиляторами или другими эектромоторами
Или, в зависимости от схемы, обеспечение ручного режима управления, в случае выхода оборудования из строя или проведения регламентных работ
Оптимальный интерфейс между PLC и оборудованием
Ширина модуля 11.2 мм
$3-х$ позиционный переключатель:

- Авто: работа в режиме моностабильного реле (по сигналу на входе АЗ)
Выкл: реле постоянно ВыкЛ
- Вкл: реле постоянно ВКЛ

Электропитание 24 V AC/DC и вход модуля - Монтаж на рейку 35 мм (EN 60715)

Примеры приложений:

- управление насосами, вентиляторами или группами электромоторов
основное применение - промышленные системы

Схема подключения:

Габаритный чертеж см. Стр. 11
Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток А
Ном.напряжение/Макс.напряжение V AC
Номинальная нагрузка AC1 VA
Номинальная нагрузка AC15 (230 V AC) VA
Допустиман мощность односразного двигателя (230 VAC) kW
Отключающая способность DC1 (24/110/220 V) A
Минимальная нагрузка переключения mW (V/mA)
Стандартный материал контактов
Характеристики контактов обратной связи (клеммы B1-В2)
Конфигурация контактов
Макс.пиковый ток mA
Ном.напряжение V AC/DC
Входные характеристики и электропитание

Ном.напряжение $\left(\mathrm{U}_{\mathrm{N}}\right)$	V AC $(50 / 60 \mathrm{~Hz})$
	VDC
Номинальная нагрузка	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Рабочий диапазон	AC
	DC

Технические характеристики
Диапазон температур
${ }^{\circ} \mathrm{C}$
Категория защиты
Сертификация (в соответствии с типом)
19.21.0.024.0000

- 1 переключаюший контакт
- Ширина модулн 11.2 мм

Контакт обратной связи

B1-B2 - обратная связь на контроллер в режиме Авто АЗ-А2 - команда ат контроллера

Характеристики

1-канальный модуль индикации состояния

- 1-канальный модуль индикации обеспечивает визуальное отображение состояния входного или выходного сигнала контроллера BMS/DDC/PLC с помощью цветных светодиодов. Переключающий выходной контакт служит для управления или обеспечивает обратную связь. Типовое применение - системы автоматики для зданий
Вход 24 V AC/DC
Монтаж на рейку 35 мм (EN 60715)

Примеры приложений:

- Отображение состояний отопительных приборов, насосов, вентиляторов или моторных групп
Контроль аварийных ситуаций, таких как угроза замораживания или засорение фильтра
Пожарная тревога

Схема подключения:

19.31.0.024.0000

- Светодиодный индикатор, 3 цвета: красный, зеленый, голубой 1 переключаюший контакт - Ширина модуля 17.5 мм

АЗ-А2 - статусный сигнал от контроллера (статус, неисправность или тревога).

* Цвет светодиода (красный, зеленый или голубой) для отображенин статуса входа АЗ-А2 выбирается переключателем на задней стороне

Цвет светодиода выбирается переключателем на задней стороне модуля, который устанавливается на рейке 35 мм.
Цвет определяется в зависимости от назначения и приоритета сигнала.
Типовые цвета, в соответствии с EN 60073:

- Красный светодиод: Неисправность оборудования
- Зеленый светодиод: Статус

Голубой светодиод: Тревога (например пожар)

Габаритный чертеж см. Стр. 11

Характеристики контактов

Конфигурация контактов

Номинальный ток/Макс.пиковый ток A
Ном.напряжение/Макс.напряжение V AC

Номинальная нагрузка AC1 VA
Номинальная нагрузка AC15 (230 V AC) VA
Допустимая мощность односразного двигателя (230 VAC) kW
Отключающая способность DC1 (24/110/220 V) A
Минимальнан нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал контактов
Входные характеристики

Ном.напряжение $\left(\mathrm{U}_{\mathrm{N}}\right)$	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
	V DC
Номинальная нагрузка	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Рабочий диапазон	AC
	DC

Технические характеристики

Диапазон температур ${ }^{\circ} \mathrm{C}$
Категория защиты
Сертификация (в соответствии с типом)
$-20 \ldots+50$
IP 20

19 Серия - Модули управления и индикации состояния

Характеристики

2-канальный модуль индикации состояния

- 2-канальный модуль индикации обеспечивает визуальное отображение состояния входных или выходных сигналов контроллера BMS/DDC/PLC с помощью цветных светодиодов. 2 нормально открытых контакта служат для управления или обеспечивают обратную связь. Типовое применение - системы автоматики для зданий
Вход 24V AC/DC
Монтаж на рейку 35 мм (EN 60715)

Примеры приложений:

- Отображение состояний отопительных приборов, насосов, вентиляторов или моторных групп
Контроль аварийных ситуаций, таких как угроза замораживания или засорение фильтра
Пожарная тревога
Схема подключения:

Габаритный чертеж см. Стр. 11
Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток А
Ном.напряжение/Макс.напряжение V AC
Номинальная нагрузка AC1 VA
Номинальная нагрузка AC15 (230 V AC) VA
Допустимая мощность однофазного двигателя (230 VAC) kW
Отключающая способность DC1 (24/110/220 V) A
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал контактов
Входные характеристики

Ном.напряжение $\left(\mathrm{U}_{\mathrm{N}}\right)$	V AC $(50 / 60 \mathrm{~Hz})$
	V DC
Номинальная нагрузка	$\mathrm{VA}(50 \mathrm{~Hz}) / W$
Рабочий диапазон	AC
	DC

Технические характеристики

Диапазон температур ${ }^{\circ} \mathrm{C}$

Категория защиты
Сертификация (в соответствии с типом)
19.32.0.024.0000

Светодиодный индикатор, 3 цвета: красный, зеленый, голубой 2 переключающих контакта - Ширина модуля 17.5 мм

АЗ-А2 Канал 1: статусный сигнал от контроллера
А4-А2 Канал 2: статусный сигнал от контроллера
Цвет светодиода выбирается переключателем на задней стороне модуля, который устанавливается на рейке 35 мм.
Цвет определяется в зависимости от назначения и приоритета сигнала.
Типовые цвета, в соответствии с EN 60073:

- Красный светодиод: Неисправность оборудования
- Зеленый светодиод: Статус
- Голубой светодиод: Тревога (например пожар)

Характеристики

Модуль управления в ручном режиме Авто/Выкл/Ручной

- Модуль Авто/Выкл/Ручной обеспечивает управления в автоматическом или ручном режиме насосами, вентиляторами или другим электрооборудованием. В случае неисправности или при техническом обслуживании, оборудование может быть переведено в ручной режим управления.
$3-х$ позиционный переключатель:
Авто: работа в режиме моностабильного реле (по сигналу на входе АЗ)
- Выкл: реле постоянно ВЫКЛ
- Вкл: реле постоннно ВКЛ

Электропитание 24V AC/DC и вход модуля

- Монтаж на рейку 35 мм (EN 60715)

Примеры приложений:

- управление насосами, вентиляторами или группами электромоторов
основное применение - инженерные системь зданий

Схема подключения:

Габаритный чертеж см. Стр. 11

Характеристики контактов (клеммы 12-11-14)	
Конфигурация контактов	1 CO (SPDT)
Номинальный ток/Макс.пиковый ток A	5/15
Ном.напряжение/Макс.напряжение V AC	250/400
Номинальная нагрузка AC1 VA	1,250
Номинальная нагрузка AC15 (230 V AC) VA	250
Догустимая мощность однофразного двигателя (230 V AC) kW	0.185
Отключающая способность DC1 (24/110/220 V) A	3/0.35/0.2
Минимальная нагрузка переключения mW (V/mA)	500 (10/5)
Стандартный материал контактов	AgCdO
Характеристики контактов обратной связи (клеммы 53-54)	
Конфигурация контактов	1 HO (SPST-NO)
Максимальный/Минимальный ток mAAC/DC	100/10
Ном.напряжение V AC/DC	24
Входные характеристики и электропитание	
Ном.напряжение (U_{N}) V AC $(50 / 60 \mathrm{~Hz})$	24
V DC	24
Номинальная нагрузка VA $(50 \mathrm{~Hz}) / \mathrm{W}$	$1(50 \mathrm{~Hz}) / 0.6$
Рабочий диапазон AC	(0.8..1.1) U_{N}
DC	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
Технические характеристики	
Диапазон температур ${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$
Категория защиты	IP20
Сертификация (в соответствии с типом)	$C E$

19 Серия - Модули управления и индикации состояния

Характеристики

Модуль управления в ручном режиме Авто/Выкл/Низкий/Высокий

- Модуль обеспечивает управления в автоматическом или ручном режиме $2-х$ скоростными насосами, вентиляторами или другим электрооборудованием. В случае неисправности или при техническом обслуживании оборудование может быть выключено или переведено в ручной режим управления «Низкая скорость» или «Высокая скорость" 4-х позиционный переключатель:
- Авто: работа по сигналу от контроллера
- Выкл: реле постоянно ВЫККЛ
- Ручной низкий: реле постоянно ВКЛ в режиме Низкий
- Ручной высокий: реле постоянно ВКЛ в режиме высокий
- Электропитание 24 V AC/DC и вход модуля - Монтаж на рейку 35 мм (EN 60715)

Примеры приложений:
управление 2-х скоростными насосами, вентиляторами или группами электромоторов основное применение - инженерные системы зданий

Схема подключения:

Габаритный чертеж см. Стр. 11
Характеристики контактов (клеммы13-14-24)
Конфигурация контактов
Номинальный ток/Макс.пиковый ток А
Ном.напряжение/Макс.напряжение V AC
Номинальная нагрузка AC1 VA
Номинальная нагрузка AC15 (230 V AC) VA
Догустимая мощность однофазного двигателя (230 V AC) kW
Отключающая способность DG1 (24/110/220 V) A
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал контактов
Характеристики контактов обратной связи (клеммы 53-54)
Конфигурация контактов

Максимальный/Минимальный ток $\quad \mathrm{mA}$	
Ном напряжение	V AC/DC

Входные характеристики и электропитание
Ном.напряжение (U_{N}) V AC (50/60 Hz)

	V DC
Номинальная нагрузка	VA $(50 \mathrm{~Hz}) / \mathrm{W}$

Рабочий диапазон \quad AC

Технические характеристики

Диапазон температур ${ }^{\circ} \mathrm{C}$
Категория защиты
Сертификация (в соответствии с типом)
19.42.0.024.0000

- Выходные контакты «Низкий» и «Высокий»
- 1 контакт обратной связи
- Ширина модуля 35 мм
- Светодиодная индикация

53-54 обратная связь на контроллер о режиме Авто
АЗ-А2 Режим «Низкая скорость»
А4-А2 Режим «Высокая скорость» (приоритет над режимом «Низкая скорость») Т = Задержка ВКЛ для 13-14 и 13-24 приблизит. 100 мс для переключения скорости. Длн переключенин электродвигателей с большим моментом инерции с 1-й на вторую скорость необходимо предусмотреть дополнительную задержку приблизит. 20 секунд.

Характеристики

Аналоговый модуль управления Авто/Ручной (0...10)V

- Аналоговый модуль обеспечивает управления (0...10)В в автоматическом режиме от контроллера (положение переключателя «A») или ручном режиме (положение переключателя «H») с передней панели модуля
Уровень сигнала ($0 . . .10$) В индицируется с помощью 3-х зеленых светодиодов,
как $>25 \%,>50 \%$ и $>75 \%$
Электропитание 24 V AC/DC
Монтаж на рейку 35 мм (EN 60715)

Примеры приложений:

плавное управление регулирующими клапанами в ручном режиме или в случае выхода из строя системы автоматики

Схема подключения:

Габаритный чертеж см. Стр. 11
Характеристика сигнала (0...10)B (клеммы Y-in)
Входной управляющий сигнал V DC
Зеленый светодиод 25\%
Зеленый светодиод 50\%
Зеленый светодиод 75\%
Характеристики контактов обратной связи (клеммы 51-52)
Конфигурация контактов
Максимальный/Минимальный ток mA
Ном.напряжение V AC/DC
Входные характеристики и электропитание
Ном.напряжение $\left(U_{N}\right) \quad V$ AC $(50 / 60 \mathrm{~Hz})$

19 Серия - Модули управления и индикации состояния

Характеристики

Силовой модуль реле 16 A

- Расчитан на ламповую нагрузку
- Материал контактов AgSnO2 для коммутации нагрузок с высокими пусковыми токами
- Электропитание DC (12 или 24 V)
- Светодиодная индикация
- Усиленная изоляция между катушкой и контактами
- Бекадмиевые контакты
- Монтаж на рейку 35 мм (EN 60715)

Схема подключения:

19.91.9.0xx. 4000

- 1 полюсный переключающий контакт - Ширина модулн 17.5 мм

Габаритный чертеж см. Стр. 11

Характеристики контактов	
Конфигурация контактов	1 CO (SPDT)
Номинальный ток/Макс.пиковый ток А	16/30 (120 A - 5 ms)
Ном.напряжение/Макс.напряжение V AC	250/440
Номинальная нагрузка AC1 VA	4,000
Номинальная нагрузка AC15 (230 V AC) VA	750
Номинальная ламповая нагрузка (230 V): накаливания W	2,000
Скомпенсированные люминисцентные W	750
Минимальная нагрузка переключения mW	300 (5 V/ 5 mA)
Стандартный материал контактов	AgSnO_{2}
Характеристики катушки	
Ном.напряжение (U_{N}) V DC	12-24
Номинальная нагрузка AC/DC VA (50 Hz)/W	1.2 / 0.5
Рабочий диапазон	(0.8 ... 1.1) U_{N}
Технические характеристики	
Механическая долговечность AC/DC циклов	$10 \cdot 10^{6}$
Электринеская долговеннюсть при номинал.нагрузке АС1 циклов	$80 \cdot 10^{3}$
Время вкл/выкл мс	12/8
Диапазон температур ${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$
Категория защиты	IP 20
Сертификация (в соответствии с типом)	CE

Информация по заказам

Пример: 19 серия - Модуль управления в ручном режиме Авто/Выкл/Ручной, 1 переключ. контакт (SPDT) 5A, питание 24 V AC/DC.

$31=1$-канальный модуль индикации состояния $32=2$-канальный модуль индикации состояния
$41=$ Модуль управления в ручном режиме -
Авто/Выкл/Ручной
$42=$ Модуль управления в ручном режиме -
Авто/Выкл/Низкий/Высокий
$50=$ Аналоговый модуль управления (0...10) V
$91=$ Силовой модуль реле

Тип питания

$0=$ AC ($50 / 60 \mathrm{~Hz}$) / DC
9 = DC
Напряжение питания
$012=12 \mathrm{~V}$
$024=24 \mathrm{~V}$

Коды заказа / Ширина модуля

19.21.0.024.0000 / 11.2 mm
19.31.0.024.0000 / 17.5 mm
19.32.0.024.0000 / 17.5 mm
19.41.0.024.0000 / 17.5 mm
19.42.0.024.0000 / 35.0 mm
19.50.0.024.0000 / 17.5 mm
19.91.9.012.4000 / 17.5 mm
19.91.9.024.4000 / 17.5 mm

Технические характеристики

Изоляция				19.21	19.31/32	19.4		19.50	19.91
Изоляция (V AC)	между питанием и контактами			3,000	1,000			-	4,000
	Между открытыми контактами			1,000	750			-	1,000
	Между питанием и контактом обратной связи			2,000	-			1,500	-
Устойчивость к перепадам									
Тип теста				Согласно нормам		19.21/31/32/42/91		19.41/50	
Электростатический			контактный разряд	EN 61000-4-2		4 kV			
			воздушный разрғд	EN 61000-4-2		8 kV			
Электромагнитное поле РЧ-диапазона ($80 \ldots 1,000$ МГц)				EN 61000-4-3		$30 \mathrm{~V} / \mathrm{m}$			
Быстрый переходный режим (разрыв) (5-50 нс, 5 кГц)				EN 61000-4-4		4 kV			
Импульсы напряжения (1.2/50 $\mu \mathrm{s}$) На клеммах питания			общий режим	EN 61000-4-5		2 kV		1 kV	
			дифференц.режим	EN 61000-4-5		1 kV		0.5 kV	
Клеммы				19.21		19.31/32/41/42/91			
(4⿹ㅏ) Момент завинчивания				0.5 Nm			0.8 Nm		
Макс. Размер провода		однож	ьный провод	$1 \times 6 / 2 \times 2.5 \mathrm{~mm}^{2}$	1x10/2x14 AWG		$1 \times 6 / 2 \times 4 \mathrm{~mm}^{2}$		1x10/2x12 AWG
		много	ьный провод	$1 \times 4 / 2 \times 1.5 \mathrm{~mm}^{2}$	1x12/2x16 AWG		$1 \times 4 / 2 \times 2.5 \mathrm{~mm}^{2}$		1x12/2x14 AWG
Длина зачистки провода				7 mm			9 mm		

Схемы подключения - Примеры приложений

Тип 19.21

Тип 19.31

* S может быть, например, НО-контакт для индикации режима Работа (выбор цвете светодиода - зеленый) или НЗ-контакт для индикации режима Неисправность или (выбор цвете светодиода - красный). Цвет светодиода выбирается на обратной стороне модуля.

Type 19.32

[^4]
Схемы подключения - Примеры приложений
 Тип 19.41

Тип 19.42

Тип 19.50

При положении переключателя А (Авто), сигнал 0... 10B на клеммах Yin - A2 имеет приоритет, он коммутируется через Yout, на конечные устройства;
При положении переключателя H (Ручной) сигнал $0 . .10 \mathrm{~V}$, заданный на модуле имеет приоритет, он коммутируется через Yout, на конечные устройства.

Габаритные чертежи

Тип 19.21
Винтовые клеммы

Тип 19.41
Винтовые клеммы

Тип 19.50
Винтовые клеммы

Тип 19.31-19.32
Винтовые клеммы

Тип 19.42
Винтовые клеммы

Тип 19.91
Винтовые клеммы

19 Серия - Модули управления и индикации состояния

Аксессуары


```
    |inimiminmituma
```


019.40

060.72

019.01

Блок маркировок, для типа 19.21, пластик, 40 знаков, 8×10 мм

[^5]
Примечания по применению

Модули ручного управления

Возрастает потребность в современных высокотехнологичных и энергосберегающих системах управления для инженерного оборудования зданий, включающего такие системы как отопление, вентиляция и кондиционирование воздуха, электроснабжение и освещение в жилых и общественных зданиях, офисах, гостиницах, частных домах, а также в промышленном секторе. Но, как правило, высококвалифицированный обслуживающий персонал не всегда бывает доступен на объекте все 24 часа. Что делать, если, например, в ночное время система автоматического управления выйдет из строн?
Применение новых модулей выбора режимов управления позволнет дежурному по объекту, обладающему минимальной квалификацией, перевести жизненно важные системы в режим ручного управления, и тем самым избежать аварийной ситуации или поломки дорогостоящего оборудования.

Модуль выбора режима управления Авто-Выкл-Вкл (Тип 19.21) Множество систем и процессов управляются в автоматическом режиме цифровыми логическими контроллерами. В случае выхода из строя или неверной логики работы контроллера бывает важно перевести тот или иной агрегат в ручной режим. Модуль выбора режима управленин Авто-Выкл-Вкл, расположенный в электрической схеме управления между выходом контроллера и конечным оборудованием, обеспечивает простой и безопасный способ перевода агрегата в нужный режим работы. При нормальной работе оборудования, переключатель находится в положении Авто, сигналы на включение и выключение агрегатов поступают от контроллера. Если обслуживающему персоналу требуется провести техническое обслуживание агрегата, это можно сделать с помощью переключения модулн 19.21 в режим ВЫКЛ.

Модуль индикации состояния (Типы 19.31 и 19.32)
Модули имеют один или два канала, и предназначены для визуальной индикации состояния входа или выхода контроллера. В зависимости от типа сигнала можно выбрать цвет светодиода - красный, зеленый или голубой. Модули имеют перекидные выходные контакты, что дает дополнительные возможности по удаленному контролю состонния агрегатов (например, из центральной диспетчерской комнаты).
Модули индикации можно использовать, например, для отображения режима работы системы отопления: рабочий режим, летний режим и т.п. Цвета светодиодов определены нормативными документами EN 60073: красный цвет - состояние тревоги или неисправности, зеленый цвет - нормальная работа, голубой цвет задается для определенных, прописанных в инструкциях состояний, например, пожарная тревога. Цвет светодиода выбирается переключателями на задней стороне модуля.

Модуль управления в ручном режиме (Типы 19.41 и 19.42) могут использоваться в случанх, когда необходимо перевести агрегаты в ручной режим, если например система автоматического управления не налажена. Для уведомления диспетчера о переводе агрегата в ручной режим, на модуле предусмотрен дополнительный контакт. Модуль 19.41 имеет 3-позиционны переключатель $\mathrm{A}-\mathrm{O}-\mathrm{H} . \mathrm{A}=$ Режим Авто, $\mathrm{O}=$ Выкл и $\mathrm{H}=$ Ручной. Модуль управления 19.42 имеет аналогичный принцип работы. Отличие в том, что этот модуль имеет возможность управлять 2-х ступенчатыми агрегата, например электронасосами, подключенными по схеме звезда-треугольник, или электромоторами, подключенными по реверсивной схеме. В таких приложениях обычно требуется предусмотреть задержку на включение второй ступени агрегата. Модуль 19.42, обеспечивает задержку при переключении между режимами "Низкая скорость" и "Высокая скорость" >80мс (и в обратную сторону).
Примечание по применению: В случае работы реверсивной схемы подключения электромоторов с двумя обмотками и переключающим конденсатором, требуется предусмотреть в схеме дополнительный таймер, обеспечивающий задержку на включение приблизительно 300 мс. Для защиты электромоторов с большим моментом инерции (например большие вентиляторы или маховики), при переключении со второй на первую скорость требуется задержка вплоть до полной остановки агрегата.

Аналоговый модуль управления (0...10)В (Тип 19.50) Этот модуль устанавливают в схему управления аналоговыми приборами с сигналом $(0 \ldots 10\rangle$ В для выбора режима управления - автоматически от контроллера PLC или вручную с модуля. Если переключатель на модуле переведен в положение "A" (Авто), управлнющий сигнал ($0 \ldots 10$)В поступает с контроллера на клеммы Yin-A2, и коммутируется на управляемый прибор через клеммы Yout-A2. В положении "H" (Ручной), сигнал с контроллера игнорируетсн, но на аналоговый прибор подается сигнал ($0 . . .10$)В, заданный вручную на потенциометре модуля 19.50.

Работа в режиме «Ручной» индицируется мигающим желтым светодиодом на модуле и через дополнительные контакты 51-52.
Уровень выходного сигнала ($0 \ldots 10$) В отображается тремя зелеными светодиодами на модуле, соответствующими $>25 \%$, $>50 \%$ и $>75 \%$.

Характеристики

Габаритные чертежи см. стр. 10
Характеристики SPD
Номинальное напрнжение (U_{N}) V AC
Максимальное рабочее напряжение (U_{C}) V AC
Импульсный ток от молнии (10/350 мкс) ($\mathrm{l}_{\mathrm{imp}}$) kA
Номинальный ток разряда (8/20 мкс) (I_{n}) kA
Максимальный ток разряда ($8 / 20 \mathrm{mkc}$) ($I_{\max }$) kA Уровень защиты напряжения $\left(U_{P}\right) \quad k V$
Возможность независимого включения последующего тока (l_{f})
Время отклика (t_{a})
Проверка на короткое замыкание при
максимальной защите от перенапряжения $\mathrm{kA} \mathrm{A}_{\mathrm{rms}}$
Максимальная защита от перенапряжения
Прочие технические характеристики
Диапазон температур ${ }^{\circ} \mathrm{C}$
Категория защиты
Сечение провода

	mм 2
	AWG
Длина зачистки провода	мм
Момент закручивания	Nm

Характеристики контактов для удаленного мониторинга
Конффигурация контактов

Номинальный ток	AAC/DC
Номинальное напряжение	V AC/DC
Сечение провода $(07 \mathrm{P} .01)$	

Сертификация (в соответствии с типом)

7P.09.1.255.0100

SPD Тип 1

- Искровой разрядник для приложений N-PE

7P.01.8.260.1025

- SPD Тип 1+2
- Комбинация Варистор + искровой разрядник закрытого типа - Визуальный контроль неисправности варистора

SPD Тип 1+2

- Комбинация Варистор + искровой разрядник закрытого типа
Визуальный контроль неисправности для каждого варистора
\square
$\stackrel{(L N}{ })$

07P.01

$+(\mathrm{N})$
N-PE
\square
\square
-
$\square 260$

100	25

1.5
100

100 (@255 V AC)

Характеристики

Устройства защиты от импульсных перенапрнжений (SPD) Тип 1+2 - одна/три фазы
Разрғдники для защиты от перенапряжений предназначены для низковольтных приложений для защиты оборудования от повышенного напряжения, вызванного попаданием молнии, индуктивного перенапряжения или пусковыми импульсами
Для установки в разделительных зонах LPZ 0_{A} LPZ 1 и выше
Версии с варистором и искровым разрғдником закрытого типа, устраняющим утечку тока и обеспечивающим высокий ток разряда
Контакты для удаленного контроля для каждого варисторного модуля. Разъем 07P. 01 в комплекте
Визуальный контроль неисправности
В соответствии в EN 61643-11
Монтаж на рейку 35мм (EN 60715), ширина каждого модуля 35мм

7P.03.8.260.1025 SPD Тип $1+2$ для трехфазных цепей без нейтрали (шина PE-N). Варисторнан защита L1, L2, L3-PEN 7P.04.8.260.1025 SPD Тип $1+2$ для трехфазных цепей с нейтралью. Варисторная защита L1, L2, L3-N + искровой разрядник N-PE
7P.05.8.260.1025 SPD Тип $1+2$ для трехфазных цепей с нейтралью. Варисторная защита L1, L2, L3-N + Варисторная защита N-PE

7P. 03 / 7P. 04 / 7P. 05 Винтовые клеммы

Габаритные чертежи см. стр. 10, 11
Характеристики SPD
Номинальное напряжение (U_{N}) VAC
Максимальное рабочее напряжение (U_{C}) V AC
Импульсный ток от молнии (10/350 мкс) (limp) kA
Номинальный ток разряда (8/20 мкс) $\left(I_{n}\right) k A$
Максимальный ток разряда (8/20 мкс) ($l_{\max }$) kA
Уровень защиты напряжения (U_{P})
последующего тока (I_{fi})
Время отклика (t_{a})
Проверка на короткое замыкание при
максимальной защите от перенапряжения $\mathrm{kA}_{\mathrm{rms}}$
Максимальная защита от перенапряжения
Прочие технические характеристики
Диапазон температур
Категория защиты
Сечение провода

	m ${ }^{2}$
	AWG
Длина зачистки провода	Mм
Момент закручивания	Nm
Характеристики контактов для удаленного мониторинга	
Конфигурация контактов	
Номинальный ток	A AC/DC
Номинальное напряжение	V AC/DC
Сечение провода (07P.01)	
	мm ${ }^{2}$
	AWG

7P.03.8.260.1025

SPD Тип $1+2$
Комбинация 3-х Варистор + искровой разрядник закрытого типа
Визуальный контроль неисправности каждого варисторного модуля

PEN

L-PEN
230
260
-
\square

А	1.5 нет последующей нагрузки
100	Н
	35

Сертификация (в соответствии с типом)

SPD Тип 1+2

- Комбинация 3-х Варистор + искровой разрядник закрытого типа + дополнительный искровой разрядник закрытого типа - Визуальный контроль неисправности каждого варисторного модуля

7P.04.8.260.1025
7P.05.8.260.1025

SPD Тип $1+2$
Комбинация 4-х Варистор

+ искровой разрядник закрытого типа - Визуальный контроль неисправности каждого варисторного модуля

L-N	N-PE

230

30
60
$+$

260	255	260	
	25	100	100
160	60	100	
1.5	1.5		
160 A gL/gG	Нет последующей нагрузки	100	
100	100		

$-40 \ldots+80$
IP20
Одножильный прово
$1 \times 1.1 \times 50$

Многожильный провод $1 \times 1 . . .1 \times 35$

1x 17...1x2
14
4

1 CO (SPDT)		1 CO (SPDT)		1 CO (SPDT)	
0.5-0.1		0.5-0.1		0.5-0.1	
250		250		250	
Одножильны провод	Многожильный провод	Одножильны провод	Многожильный провод	Одножильны провод	Многожильный провод
1.5	1.5	1.5	1.5	1.5	1.5
16	16	16	16	16	16

7Р Серия - Устройства защиты от импульсных перенапряжений (SPD)

Характеристики

Устройства защиты от импульсных перенапрнжений (SPD) Тип 1 длн "Систем с низким напряжением U_{p} " - одна/три фазы

- Разрядники для защиты от перенапряжений для
систем 230/400B для защиты оборудования от
повышенного напряжения, вызванного прямым
или непрямым попаданием молнии
- Для установки в разделительных зонах $\operatorname{LPZ} 0_{A}$ и
LPZ 1
"Система с низким напряжением U_{p} " обеспечивает
низкое значение U_{p}, такое же, как встроенный SPD Тип 2
Визуальный контроль состояния варистора Норма/Заменить
Контакты для удаленного контроля для каждого варисторного модуля. Разъем 07P. 01 в комплекте В соответствии в EN 61643-11
Монтаж на рейку 35мм (EN 60715), ширина каждого модуля 35мм
7P.12.8.275.1012
Варисторнан защита $L-N+$ искровой разрядник N-PE
Заменяемые модули: Искровой разрядник и Варистор
7P.13.8.275.1012
Варисторная защита L1, L2, L3-PEN
Заменяемые варисторные модули

Габаритные чертежи см. стр. 11
Характеристики SPD
Номинальное напряжение $\left(\mathrm{U}_{\mathrm{N}}\right) \quad \mathrm{V}$)
Максимальное рабочее напряжение (U_{C}) V AC/DC
Импульсный ток от молнии (10/350 мкс) $\left(\mathrm{l}_{\mathrm{imp}}\right)$ kA
Номинальный ток разряда ($8 / 20 \mathrm{mKc}$) (I_{n}) kA
Максимәльный ток разряда ($8 / 20 \mathrm{mkc}$) $\left(I_{\text {max }}\right) \mathrm{kA}$
Уровень зашиты напряжения (U_{p}) kV
Возможность независимого включения последующего тока (l_{fi})
Время отклика (t_{a})
Проверка на короткое замыкание при
максимальной защите от перенапряжения $\mathrm{kA} \mathrm{A}_{\mathrm{ms}}$
Максимальная защита от перенапряжения
Коды заменнемых модулей

Прочие технические характеристики

Диапазон температур ${ }^{\circ} \mathrm{O}$
Категория защиты
Сечение провода

	MM ${ }^{2}$
	AWG
Длина зачистки провода	MM
Момент закручивания	Nm

Характеристики контактов для удаленного мониторинга					
Конфигурация контактов	1 CO (SPDT)		-	1 CO (SPDT)	
Номинальный ток AAC/DC	0.5-0.1		-	0.5-0.1	
Номинальное напряжение V AC/DC	250		-		
Сечение провода (07P.01)	Одножильны провод	Многожильный провод		Одножильны провод	Многожильный провод
MM ${ }^{2}$	1.5	1.5	-	1.5	1.5
AWG	16	16	-	16	16
Сертификация (в соответствии с типом)	$C E$				

Характеристики

Устройства защиты от импульсных перенапрнжений (SPD) Тип 1 длн "Систем с низким напряжением U_{p} " - три фазы

Разрядники для защиты от перенапряжений для систем 230/400В для защиты оборудования от повышенного напряжения, вызванного прямым или непрямым попаданием молнии.
Дла установки в разделительных зонах LPZ 0_{A} и LPZ 1
"Система с низким напряжением U_{p} " обеспечивает низкое значение U_{p}, такое же, как встроенный SPD Тип 2
Визуальный контроль состояния варистора Норма/Заменить
Контакты для удаленного контроля для каждого варисторного модуля. Разъем 07P. 01 в комплекте В соответствии в EN 61643-11
Монтаж на рейку 35мм (EN 60715), ширина каждого модуля 35мм

7P.14.8.275. 1012

Варисторная защита L1, L2, L3-N + искровой разрядник N-PE
Заменяемые варисторные модули
Незаменяемый Искровой разрядник 7P.15.8.275.1012
Варисторная защита L1, L2, L3,N-PE
Заменғемые варисторные модули

7P. 21 / 7P. 22

Винтовые клеммы

Габаритные чертежи см. стр. 11

Характеристики SPD

Номинальное напрнжение $\left(\mathrm{U}_{\mathrm{N}}\right)$ VAC
Максимальное рабочее напрғжение (U_{C}) V AC/DC
Импульсный ток от молнии (10/350 мкс) (limp $)$ кA
Номинальный ток разряда ($8 / 20 \mathrm{mkc}$) ($\left.I_{n}\right) \mathrm{kA}$
Максимальный ток разряда ($8 / 20$ мкс) ($I_{\max }$) kA Уровень защиты напряжения (U_{P}) kV
Возможность независимого включения последующего тока ($\mathrm{Ifi}_{\mathrm{f}}$)

Время отклика (t_{a})

Проверка на короткое замыкание при
максимальной защите от перенапряжения kA fms
Максимальная защита от перенапряжения
Коды заменяемых модулей
Прочие технические характеристики
Диапазон температу
Категория защиты
Сечение провода

	MM 2
	AWG
Длина зачистки провода	Mм
Момент закручивания	Nm
Характеристики контактов для удаленного мониторинга	
Конфогурация контактов	

Номинальный ток	AAC/DC
Номинальное напряжение	V AC/DC
Сечение провода (07P.01)	

Сертификация (в соответствии с типом)

7P.14.8.275.1012

SPD Тип 1
Заменяемые варисторные модули Визуальный и удаленный контроль состояния варистора
\square

- SPD Тип 1
- Заменяемые варисторные модули - Визуальный и удаленный контроль состояния варисторов

L-N	N-PE
230	-

275/
A

7Р Серия - Устройства защиты от импульсных перенапряжений (SPD)

Характеристики

Устройства защиты от импульсных перенапряжений (SPD) Тип 2 однофазные системы
Разрядники для защиты систем 230/400В Защита оборудования от перенапряжения вызванного попаданием молнии или бросками напряжения в сети
Для установки в разделительных зонах LPZ 1 - LPZ 2 или выше
7P.21.8.275.1020 Варисторная защита L-N 7P.22.8.275.1020 Варисторная защита L-N + искровой разрядник N-PE
Искровой разрядник N-PE предотвращает утечку тока через заземление
Визуальный контроль состояния варистора Норма/Заменить
Контакты для удаленного контроля для каждого варисторного модуля. Разъем $07 P .01$ в комплекте
Рекомендованный предохранитель: 125А
Заменяемые варисторные модули
В соответствии в EN 61643-11
Монтаж на рейку 35мм (EN 60715), ширина каждого модуля 35мм

7P. 21 / 7P. 22

Винтовые клеммы

Габаритные чертежи см. стр. 12

Диапазон температ
Сечение провода

Характеристики

Устройства защиты от импульсных перенапряжений (SPD) Тип 2 трехфазные системы

- Разрғдники для защиты систем 230/400B Защита оборудования от перенапряжения, вызванного попаданием молнии или бросками напряжения в сети
Для установки в разделительных зонах
LPZ 1 - LPZ 2 или выше
7P.23.8.275.1020 Варисторная защита L1, L2, L3
7P.24.8.275.1020 Варисторная защита L1, L2, L3-N, + искровой разрядник N-PE 7P.25.8.275.1020 Варисторная защита L1, L2, L3-N, + искровой разрядник N-PE

Искровой разрядник N-PE предотвращает утечку тока через заземление
Визуальный контроль состояния варистора Норма/Заменить
Контакты для удаленного контроля для каждого варисторного модуля. Разъем 07 P .01 в комплекте
Рекомендованный предохранитель: 125А
Заменяемые варисторные модули
В соответствии в EN 61 643-11
Монтаж на рейку 35мм (EN 60715), ширина каждого модуля 35мм

7P. 23.8 / 7P. 24 / 7P. 25
Винтовые клеммы

Габаритные чертежи см. стр. 12
Характеристики SPD
Номинальное напряжение $\left(\mathrm{U}_{\mathrm{N}}\right)$ VAC
Максимальное рабочее напряжение (U_{C}) V AC/DC
Номинальный ток разряда ($8 / 20$ мкс) $\left(I_{n}\right) k A$
Максимальный ток разряда ($8 / 20$ мкс) ($I_{\text {max }}$) kA
Уровень защиты напряжения в $5 \mathrm{kA}\left(\mathrm{U}_{\mathrm{P} 5}\right) \mathrm{kV}$
Уровень защиты напряжения в $I_{n}\left(U_{P}\right) \quad k V$
Время отклика (t_{a})
Проверка на короткое замыкание при
максимальной защите от перенапрнжения kA rms
Максимальная защита от перенапряжения
Коды заменяемых модулей
Прочие технические характеристики
Диапазон температур ${ }^{\circ}$
Категория защиты
Сечение провода

	MM 2
	AWG
	мм
Длина зачистки провода	Nm
Момент закручивания	
Характеристики контактов длғ удаленного мониторинга	
Конфигурация контактов	
Номинальный ток	AAC/DC
Номинальное напряжение	V AC/DC

	MM 2
	AWG
	Mm
Длина зачистки провода	Nm
Момент закручивания	
Характеристики контактов для удаленного мониторинга	
Конфигурация контактов	
Номинальный ток	AAC/DC
Номинальное напряжение	V AC/DC

	MM 2
	AWG
	мм
Длина зачистки провода	Nm
Момент закручивания	
Характеристики контактов для удаленного мониторинга	
Конфигурация контактов	
Номинальный ток	AAC/DC
Номинальное напряжение	V AC/DC

	MM 2
	AWG
	мм
Длина зачистки провода	Nm
Момент закручивания	
Характеристики контактов длғ удаленного мониторинга	
Конфигурация контактов	
Номинальный ток	AAC/DC
Номинальное напряжение	V AC/DC

Сечение провода (07P.01)
\qquad
Сертификация (в соответствии с типом)
C

7P.23.8.275.1020

SPD Тип 2 (3 варистора) Заменяемые варисторные модули
Визуальный и удаленный контроль состояния варистора

230	
275 / 350	
20	
40	
0.9	
1.2	
25	
35	
160 A gL/gG	16
7P.20.8.275.0020	7P.2

SPD Тип 2 (3 варистора + искровой разрядник) Комбинация: заменяемые варисторы и искровой разрядник закрытого типа Визуальный и удаленный контроль состояния варистора

07P. 01	07 P .01
121114	121114
	ioco

L, N-PE
230
275 / 350
SPD Тип 2 (4 варистора) - Заменяемые варисторные модули
Визуальный и удаленный контроль состояния варистора

7P.25.8.275.1020

7P.24.8.275.1020

L-N	N-PE
230	-
$275 / 350$	$255 /-$
20	20
40	40
0.9	-
1.2	1.5
25	100
35	-
160 A gL/gG	-
$7 P .20 .8 .275 .0020$	$7 P .20 .1 .000 .0020$

160 A gL/gG
7P.20.8.275.0020
\square -
$-40 \ldots+80$
IP20
Од
дножильный провод

\square
од
$1 \times 17 \ldots 1 \times 1$
-

Характеристики

Устройства защиты от импульсных перенапряжений (SPD) Тип 2 для фотогальванических систем
Защиты фотогальванических систем DC (от 420 до 1000B)
Защита оборудования от перенапряжения вызванного попаданием молнии или бросками напряжения в сети
Для установки в разделительных зонах LPZ 0 - LPZ 1 или выше
7P.26.9.420.1020 420 V DC
7P.23.9.700.1020 700 V DC
7P.23.9.000.1020 1000 V DC
Визуальный контроль состонния варистора Норма/Заменить
Контакты для удаленного контроля для каждого варисторного модулн. Разъем 07P. 01 в комплекте
Заменяемые варисторные модули
В соответствии в EN 61 643-11
Монтаж на рейку 35мм (EN 60715), ширина каждого модуля 35мм

7P. 23.9 / 7P. 26
Винтовые клеммы

Габаритные чертежи см. стр. 12
Характеристики SPD

$\begin{array}{ll}\text { Диапазон температур } & { }^{\circ} \mathrm{C} \\ \text { Категория защиты }\end{array}$
Сечение провода

	Mm 2
	AWG
Длина зачистки провода	Mm
Момент закручивания	Nm

Характеристики контактов для удаленного мониторинга
Конфигурация контактов

Номинальный ток	A AC/DC
Номинальное напряжение	V AC/DC
Сечение провода (07P 01)	

Сечение провода (07P.01)

Сертификация (в соответствии с типом)

7P.26.9.420.1020

SPD Тип 2 (2 варистора + 1 искровой разрядник) для фотогальванических систем 420V DC
Комбинация: заменяемые варисторы и искровой разрядник закрытого типа Визуальный и удаленный контроль состолния варисторов

7P.23.9.700.1020

SPD Тип 2 (3 варистора) для фотогальванических систем 700V DC
Заменяемые варисторы Визуальный и удаленный контроль состояния варисторов

7P.23.9.000.1020

SPD Тип 2 (3 варистора) для фотогальванических систем 1000V DC
Заменяемые варисторы
Визуальный и удаленный контроль состояния варисторов

Характеристики

Устройства защиты от импульсных перенапряжений (SPD) Тип 3 для установки в розетки
Обеспечивает простую защиту электрических цепей 230 V AC Защищает электрическое и электронное оборудования от перенапряжения
Комбинированная защита варистор + искровой разрядник (предотвращает утечку тока через заземление)
Акустическая сигнализация неисправности варистора (заменить)
В соответствии в EN 61 643-11
3 провода, длиной 150мм для подключения к клеммам розетки

Габаритные чертежи см. стр. 12

Характеристики SPD	
Номинальное напряжение (U_{N}) V AC	230
Максимальное продолжительное рабочее напряжение (U_{C}) $V A C$	275
Номинальный ток разряда (8/20 мкс) L-N, L(N)-PE (In)	3 / 3
Теср напряжения комбинированного генератора $\mathrm{L}-\mathrm{N}, \mathrm{L}(\mathrm{N})$-PE (U_{OC})	6 / 6
Уровень защиты напряжения L-N, L(N)-PE (UP)	$1 / 1.5$
Время отклика L-N, L(N)-PE (t_{a}) ns	$25 / 100$
Проверка на короткое замыкание при максимальной защите от перенапряжения $k A_{\mathrm{rms}}$	6
Максимальная защита от перенапряжения	16A gL/gG or C16 A
Кратковременное перенапряжение 5c L-N (UTOV)	335
Кратковременное перенапряжение 5c L-PE (UTOV)	400
Кратковременное перенапряжение 200 мс L-PE (UTOV)	1430
Прочие технические характеристики	
Диапазон температур ${ }^{\circ} \mathrm{C}$	-25...+40
Категория защиты	IP 20
Длина провода мм	150
Сертификация (в соответствии с типом)	CE

7Р Серия - Устройства защиты от импульсных перенапряжений (SPD)

Информация по заказам

Пример: 7P серия, устройство защиты от импульсных перенапряжений, Тип 2, одна фаза ($\mathrm{Uc}=275 \mathrm{~V}$), 1 варистор +1 искровой разрядник закрытого типа, контакт для удаленного контроля состояния, $\ln =20 \mathrm{kA}$

$9=$ N-PE искровый разрядник
$0=$ Запасной модуль

Питание

1 = N+PE подключение
(только для одиночного модуля защитный разрядник и 7P.09)
$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$
$9=\mathrm{DC}$ (фотогальванические приложения)
Напряжение питания
$000=1.000 \mathrm{~V}$ DC Маск. (или N+PE подключение модуля искровой разрядник)
$700=700 \vee$ DC Маск.
$420=420$ V DC Маск.
$275=275 \mathrm{~V}$ Mack. для SPD Тип 1 "Low Up", Тип $2\left(\mathrm{U}_{\mathrm{c}}\right)$ (для $\mathrm{U}_{\mathrm{N}}=230-240 \mathrm{~V}$ AC) и Тип 3
$260=260 \mathrm{~V}$ Mack. $\left(\mathrm{U}_{\mathrm{c}}\right)$ для SPD Тип $1+2$ (для $\mathrm{U}_{\mathrm{N}}=230-240 \mathrm{~V}$ AC)
$255=255 \mathrm{~V}$ Маск. (U_{c}) для SPD Тип 1, N+PE (7P.09)

Заменяемые модули

Заменяемые модули Варистор и Искровой разрядник	7P.20.8.275.0020	7P.20.9.350.0020	7P.20.9.500.0020	7P.20.1.000.0020	7P.20.1.000.9020
	Варистор	Варистор	Варистор	Искровой разрядник	Искровой разрядник
Максимальное рабочее напряжение (U_{C}) V AC/DC	275 /-	-/350	-/500	255 /-	-/ 420
Номинальный ток разряда (8/20 $/$ s) (I_{n}) kA	20	20	20	20	20
Максимальный ток разряда (8/20 $\mu \mathrm{s}$) ($\left.I_{\max }\right) \mathrm{kA}$	40	40	40	40	40
Уровень защиты напряжения (U_{P}) kV	1.2	1.2	1.8	1.5	1.5
Время отклика (ta_{a}) ns	25	25	25	100	100
Максимальная защита от перенапрнжения	$160 \mathrm{AgL} / \mathrm{gG}$	$125 \mathrm{~A} \mathrm{gL/gG}$	$125 \mathrm{~A} \mathrm{gL/gG}$	-	-

7Р Серия - Устройства защиты от импульсных перенапряжений (SPD) - Габаритные чертежи

Габаритные чертежи

Тип 7P. 09
Винтовые клеммы

Тип 7P. 01
Винтовые клеммы

Тип 7P. 02
Винтовые клеммы

Тип 7P. 03
Винтовые клеммы

Тип 7P. 04
Винтовые клеммь

Габаритные чертежи

Тип 7P. 05
Винтовые клеммы

Тип 7P. 12
Винтовые клеммы

ип 7P. 14
Винтовые клеммы

Тип 7P. 15
Винтовые клеммы

Габаритные чертежи

Тип 7P. 21
Винтовые клеммы

Тип 7P.23.8
Винтовые клеммы

Тип 7P. 22
Винтовые клеммы

Тип 7P. 24
Винтовые клеммы

Тип 7P. 23.9
Винтовые клеммы

Тип 7P. 26
Винтовые клеммы

Тип 7P. 20
Заменяемый модуль
Тип 7P. 32
Винтовые клеммь

07P. 01
Разъем

7Р Серия - Устройства защиты от импульсных перенапряжений (SPD)

Примеры приложений - SPD Тип 1 + 2

ТТ-ОДНОФАЗНАЯ СИСТЕМА - УСТАНОВКА SPD ДО УЗО

7P.02.8.260.1025

ТТ-ТРЕХФАЗНАЯ СИСТЕМА - УСТАНОВКА SPD ДО УЗО

7P.04.8.260.1025

ТТ-ОДНОФАЗНАЯ СИСТЕМА - УСТАНОВКА SPD ДО УЗО

7P.01.8.260.1025 7P.09.1.255.0100

ТТ-ТРЕХФАЗНАЯ СИСТЕМА - УСТАНОВКА SPD ДО УЗО

Примеры приложений - SPD Тип 1 и Тип 2 - однофазная система

ТТ-ОДНОФАЗНАЯ СИСТЕМА - УСТАНОВКА SPD ДО УЗО

TТ или TN-S ОДНОФАЗНАЯ СИСТЕМА - УСТАНОВКА SPD ПОСЛЕ УЗО

Примеры приложений - SPD Тип 3

ТТ или TN-S ОДНОФАЗНАЯ СИСТЕМА - УСТАНОВКА В РОЗЕТКУ

Примечание: рекомендуется УЗО тип S

7Р Серия - Устройства защиты от импульсных перенапряжений (SPD)

Примеры приложений - SPD Тип 1 и Тип 2 - Трехфазная система

ТТ-ТРЕХФАЗНАЯ СИСТЕМА - УСТАНОВКА SPD ДО УЗО

ТТ-ТРЕХФАЗНАЯ СИСТЕМА - УСТАНОВКА SPD ПОСЛЕ УЗО

Примечание: рекомендуетсн УЗО тип S

TN-S TPEХФАЗНАЯ СИСТЕМА - УСТАНОВКА SPD ПОСЛЕ АВТОМАТА ЗАЩИТЫ ПО ТОКУ

TN-С ТРЕХФАЗНАЯ СИСТЕМА - УСТАНОВКА SPD ДО АВТОМАТА ЗАЩИТЫ ПО ТОКУ

Примеры приложений - фотогальванические системы

7P.22.8.275.1020

Защита от импульсных перенапряжений

Устройства защита от скачков напряжения (такие как устройства SPD производства Finder) устанавливаются в электрических цепях и служат для защиты людей и оборудования от скачков напряжения, которые могут образовываться по разным причинам на подводящих электрических линиях. Эти скачки напрнжения в сети могут быть вызваны как атмосферными явлениями (молнии), так и большими пусковыми токами при запуске мощных электродвигателей, короткими замыканиями в сети, и прочими факторами. Устройства SPD устанавливаются как выключатели нагрузки параллельно линии электрического ввода, которая подлежит защите. При нормальном напрнжении в сети (например, 230 B), SPD работает как открытый контакт, имеющий очень высокое сопротивление (стремящееся к бесконечности). Но, в условиях повышенного напряжения его сопротивление стремительно падает до 0Ω. Это немедленно вызывает короткое замыкание линии питания, и отводит повышенное напряжение на землю. Таким образом, линии питания защищаются при помощи устройств SPD. Когда напряжение питания возвращается в норму, сопротивление SPD резко увеличивается, и снова начинает работать как открытый контакт.

Рис 1: Нормальнан работа SPD

Технологии SPD

Устройства защиты от импульсных перенапряжений Finder используют варисторы и искровые разрядники.

Варистор: устройство с переменным сопротивлением. При номинальном напряжении его сопротивление стремится к бесконечности, но в случае скачков напрнжения в сети, его сопротивление резко падает до нуля. Таким образом, варистор обеспечивает короткозамкнутый контур в случаях перенапряжения в сети. В процессе работы по защите сети, происходит деградация характеристик варистора из-за тока утечки, значение которого не велико при нормальном напряжении, но резко возрастает при каждом броске напряжения, вплоть до окончания срока службы варистора, на что указывает изменение цвета в сигнальном окошке модуля - с зеленого на красный.

Искровой разрядник: состоит из двух электродов, разделенных воздухом или газом. При возникновении скачков напряжения, через электрическую дугу между электродами проходит разряд, и напряжение возвращается в норму. Электрическая дуга гасится при значениях тока равных или ниже 10 ампер. Газовая среда обеспечивает постоянный уровень напряжения пробон, которое не зависит в этом случае от окружающей среды, атмосферного давления, влажности или примесей в воздушной среде. Однако, существует небольшан задержка между образования дуги и моментом начала отвода тока, которая зависит от величины перенапряжения и скорости нарастания. Следовательно, уровень защиты искровым разрядником может варьироваться в некоторых пределах, но он гарантивано ниже параметра U_{p}.

Рис 2: Характеристики компонент SPD.

Категории защиты (по перенапряжению)

При выборе устройств SPD требуется согласовать значение Номинального напряжения SPD, с защищаемым оборудованием. Это в свою очередь относится к категориям защиты (по перенапряжению). Категории защиты нормируются согласно IEC 60664-1, для напряжений 230/400 V следующим образом:

- Категория защиты I: 1.5 кB длн "особо чувствительного" оборудования (например электронные устройства, ПК, телевизоры и т.п.;
- Категория защиты II: 2.5 кВ для "потребительского" оборудования, работающего в "нормальной" электрической сети (например, бытовые электрические приборы);
Категория защиты III: 4 кВ для оборудования, являющегося частью электрической системы (например электрощиты, силовые выключатели)
Категория защиты IV: 6 кВ для оборудованин установленного в электрических вводных и распределительных щитах (например, электросчетчики).

Зоны защиты от молнии и Категории защиты

Международные стандарты определяют различные зоны защиты от молнии. Они обозначаются аббревиатурой LPZ с соответствующим номером.
LPZ 0A: Внешняя зона, где возможно прямое попадание молнии, и где оборудование подвергается максимальному влиянию наведенного молнией электромагнитного поля.
LPZ 0B: Внешняя зона, расположенная за устройством защиты от молнии, но подверженная влиянию наведенного молнией электромагнитного поля.
LPZ 1: Зона внутри здания - подверженная попаданию молнии. Электромагнитное поле уменьшенное, и зависит от степени экранирования. Эта зона защищается устройствами SPD Тип 1 совместно с устройствами защиты в зонах LPZ OA или 0B.
LPZ 2: Зона, например комната, где скачки тока от молнии ограничиваются устройствами защиты. Эти зоны надлежит защищать устройствами SPD Тип 2, совместно с устройствами защиты в зоне LPZ 1.
LPZ 3: Зона внутри помещения, электрооборудование которой особо защищается от бросков напряжения (обычно защита устанавливается внутри розетки). Эта зона оснащается устройствами SPD Тип 3, которые работают совместно с устройствами защиты в зоне LPZ2.
На следующей иллюстрации (Рис 3, изображение не является связью) показаны связь между защищаемыми зонами и устройствами SPD. Устройство SPD Тип 1 следует подкпючать до электрической системы здания, в точке силового ввода. Как альтернатива, можно применять SPD Тип 1+2. Кабель заземления должен иметь минимальное сечение 6 мм2 для SPD Тип 1, или 4 мм2 для SPD Тип 2, и 1.5 мм2 для SPD Тип 3 (если здание оснащено фотогальваническими системами, для выбора сечения кабеля следует руководствоваться нормативами CEI 81-10/4).

Рис 3: Типовые Зоны защиты от молнии (LPZ), Категории защиты и Устройства SPD

Расчетные значения и общая маркировка для всех SPD

 [U_{c}] Максимальное продолжительное рабочее напряжение: C этим напряжением SPD гарантированно работает как "открытый контакт". Это напряжение обычно равно номинальному напряжению на вводе $\left(U_{N}\right)+10 \%$. Для устройств SPD Finder, U_{c} определнется как 275 B.$\left[U_{p}\right]$ Уровень защиты напряжения: Максимальное напряжение, которое может выдержать устройство SPD во время скачка напряжения. Например, для устройств SPD Finder Тип 2, это означает, что перенапряжение 4кВ будет ограничено максимум до 1.2 кВ. Следовательно, электронные устройства, такие как ПК, телевизор, стерео-система и т.д. будут под защитой, т.к. их внутренняя защита способна выдержать перенапряжение до 1.5 кВ. Для лучшего понимания этой концепции, представьте, что SPD это выключатель с низким сопротивлением, установленный параллельно. В случае скачков напряжения, выключатель замыкается, и весь ток течет через сопротивление. Согласно закона Ома, падение напряжения на нагрузке будет равно произведению сопротивления на ток ($\mathrm{V}=\mathrm{Rx}$) , ибудет ограничено $<\mathrm{U}_{p}$.

PE
SPD
Рис 4: Ограничение скачков напряжения
Проверка на короткое замыкание: Следующая характеристика, обычно не приводится для устройств, но важная для правильной установки, это проверка на короткое замыкание при максимальной защите от перенапряжения. Это максимальный ток через короткозамкнутую цепь, который может выдержать устройство SPD, установленное совместно с устройствами дополнительной защиты от перенапряжения - такими как предохранители, рассчитанными на значения ниже, чем SPD. Следовательно, максимальный расчетный ток через короткозамкнутую цепь, в точке установки устройства SPD не должен превышать это значение.

Расчетные значения и маркировка SPD Тип 1

SPD Тип 1 следует устанавливать до электросистемы, в точке силового ввода. SPD обеспечивает защиту людей и оборудования в здании от прямого попадания молнии (возникновения пожара и смерти людей) и характеризуется следующими параметрами:
[$l_{\mathrm{imp}}{ }^{10 / 350]}$ Импульсный ток: l_{imp} соответствует пиковому значению тока при импульсе 10/350 мкс. Этот колебательный сигнал соответствует прямому попаданию молнии и применяется для тестов производительности устройств SPD тип 1.

Рис 5: Колебательный сигнал 10/350 мкс
Из сравнения форм сигналов на рис 5 и рис 6 , видно, что устройства SPD тип 1 обеспечивают защиту от более высокой энергии.
[In8/20] Номинальный ток разряда: Пиковый ток (и форма колебательного сигнала) через устройство SPD, в соответствии с нормативами EN 62305, определяется как последствие попадания молнии для линии электропитания.
I (пиковый)

Рис 6: Колебательный сигнал 8/20 мкс

Расчетные значения и маркировка SPD Тип 2

Устройства SPD тип 2 служат длн непропускания повышенного напряжения от молнии в электрические цепи, для которых важно соблюдение параметров стабильного напряжения. SPD тип 2 устанавливаются за устройствами SPD тип 1 или SPD тип $1+2$, (минимальное расстояние 1 м) и защищают системы и оборудование от повреждения. Устройства SPD тип 2 характеризуются:
[$\left.{ }_{n} 8 / 20\right]$ Номинальный ток разряда: Пиковый ток (и форма колебательного сигнала) через устройство SPD, в соответствии с нормативами EN 62305 , определяется как последствие попадания молнии для линии электропитания.
[${ }^{\max }{ }^{8}$ 820] Максимальный ток разряда: Пиковое значение максимального тока при импульсе 8/20мкс, которое устройство SPD может разрядить хотя бы 1 раз.

Расчетные значения и маркировка SPD Тип 3

Устройства SPD тип 3 применяются для защиты конечного оборудования от перенапряжений. Их устанавливают в электрораспределительных сетях, совместно с устройствами SDP тип 1 и/или 2. Они устанавливаются в постоянных или переносных розетках. Основные характеристики SPD тип 3:
$U_{o c}$: тестовое напряжение. Это пиковое значение напряжения от тестового генератора с импульсом $1.2 / 50$ мкс (рис 7) , в тоже времн допускается подача тока с импульсом 8/20мкс (рис 6).

Рис 7: Колебательный сигнал $1.2 / 50$ мкс

Рекомендации по подключению

Для правильной установки устройств SPD требуется обеспечить минимальное расстояние до локальной шины с равным потенциалом, к которой подключены кабели заземления от защищаемого оборудования. При подключение фазы следует руководствоваться расчетной нагрузкой.

Рекомендуется защита от короткого замыкания устройств SPD (предохранителями типов $\mathrm{gL} / \mathrm{gG}$).

Если устройства защиты от перегрузки по току F1 (которые не являются частью схемы) имеют рабочий диапазон меньше или равный максимальному рекомендованному диапазону для устройств защиты по току F2 (резервный предохранитель), в этом случае F2 может быть пропущен.

Если F1 > 160 A, тогда $F 2=160$ A (F2min = 125 А только для SPD тип 2)
Если F1 ≤ 160 A, тогда F2 может быть пропущен

Применение предохранителя 125 А тип $\mathrm{gL} / \mathrm{gG}$, вместо предохранителя 160 А тип $\mathrm{gL} / \mathrm{gG}$, как защита по току от короткого замыкания допустимо, и не влияет на эффективность и функции защиты устройства SPD.

Взаимодействие устройств SPD

Для оптимальной защиты от скачков напряжения рекомендуется каскадирование устройств SPD. Взаимодействие имеет целью разделение энергии, проходящей через устройства SPD или, как альтернатива, их подключение при помощи проводов, имеющих минимальную длину, обозначенную на рисунке ниже, для использования полного сопротивления их собственных проводников.

$$
\begin{array}{lll}
\text { 7P.0X } & 7 P .2 X & 7 P .32
\end{array}
$$

Защита фотогальванических систем (PV) от молнии

Фотогальванические системы обычно устанавливаются в местах зданий, наиболее подверженных ударам молний. Если нет альтернативы установке фотогальванических панелей в других местах, кроме крыши, единственным практическим способом защиты от прямых ударов молний, является применение системы защиты от молний (LPS). Непрямые эффекты от молнии могут быть скомпенсированы грамотным применением устройств SPD. Такие эффекты могут возникать когда удары молнии происходят в близости от электрических линий, и магнитная индукция создает повышенное напряжение в проводниках - опасность как для людей, так и для оборудования На практике, кабели постоянного тока фотогальванических систем весьма уязвимы от кондуктивных и излучаемых наводок вызванных электрическими воздушными разрядами молний Более того, перенапряжения в фотогальванических системах имеют не только атмосферное происхождение. Также следует принимать во внимание скачки напряжения, вызванные переключениями электрических потребителей, подключенным к ним. Эти перенапряжения могут вывести из строя как инверторы, так и фотогальванические панели, следовательно следует организовать защиту инвертора как со стороны DC, так и со стороны AG.

Варианты установки

[Oc stc $^{\text {s }}$ Напряжение фотогальванической системы: соответствует максимальному рабочему напрнжению SPD, и должно быть больше или равно максимальному напряжению без нагрузки фотогальванической системы - в зависимости от конфигурации: без заземления или с центральным заземлением Предполагается, что максимальное напряжение без нагрузки фотогальванической системы рассчитано по формуле $1.2 \times \mathrm{Nx}$ Uос(модуль), где Uос(модуль) напряжение без нагрузки одного модуля фотогальванической системы в стандартных условиях, N - количество модулей, подключенных последовательно в каждой зоне системы (TS 50539-12).

Система без заземления

Система без заземления типична для небольших инсталляций характеризуется отсутствием заземления со стороны DC. Uoc stc соответствует напряжению между положительной и отрицательной клеммами. Фотогальванические панели класса II обычно применяются в системах без заземления. Однако, в случае применения панелей класса I, их металлические корпуса надлежит тщательно заземлить.

Рис 8: Инсталляция системы без заземления

Системы с центральным заземлением

Система применяется для больших установок, работающих с большим напряжением: заземление проводится в соответствии с нормами проводом соответствующего сечения. В этом случае Uoc STC - потенциал между клеммами подключения SPD и заземлением.

Рис 9: Инсталлнция системы с центральным заземлением

Фотогальванические системы для зданий без системы защиты от молнии (LPS)

В качестве примера на рис. 10 приведена упрощенная схема фотогальванической системы, установленной на здании не оборудованном молниеотводом. В таких системах защита от молний должна быть предусмотрена для следующих компонент фотогальванической системы:

- Вход DC инвертора
- Выход АС инвертора
- Низковольтная распределительная сеть

На входе DC инвертора следует установить устройство SPD, предназначенное для фотогальванических систем, в соответствии с расчетным напряжением системы. На выходе АС инвертора, следует установить устройства защиты от скачков напряжения тип 2 , в соответствии с типом системы. В точке подключения низковольтной распределительной сети, установить устройства SPD тип 2, подходящего типа (TT, TN). В более сложных системах понадобится установка дополнительных устройств SPD. Например, если фотогальванические панели расположены далее, чем в 10 м от инвертора, установите один комплект SPD как можно ближе к панелям, и один комплект SPD около инвертора. В точке съема нагрузки должен быть установлен SPD тип 1 или комбинация тип + тип 2.

Рис 10: пример фотогальванической системы длн зданин не оборудованного системой защиты от молний; защита со стороны DC при помощи SPD c Uoc STC $=420 \mathrm{~V}$, и защита со стороны AC устройством 7P.22, характерным для систем TT.

Фотогальванические системы для зданий, оснащенных системой защиты от молний (LPS)

Для зданий, оснащенных LPS, хорошей практикой является установка фотогальванических панелей в зоне, защищенной молниеотводом. Дополнительно требуется обеспечить выравнивание потенциалов с помощью шины соответствующего сечения, расположенной как можно ближе к точке подключения низковольтной распределительной сети. Система LPS, устройства SPD и все металлические части надлежит подсоединить к шине выравнивания потенциалов. Устройства SPD для защиты со стороны DC аналогичные, как и для систем без молниеотвода, следовательно, нужно применять разрядники соответствующего напряжения (UOC STC) для фотогальванических систем. Для защиты инвертора со стороны АС применяются устройства SPD тип 2 , при условии, что на вводе установлено устройство SPD тип 1. Однако, если инвертер расположен около панелей, рекомендуется установить SPD тип 1 со стороны AC, вместо SPD тип 2. Имейте ввиду, что в соответствии с EN 62305, установка SPD тип 1 обязательна в точке электрического ввода, в случае если здание оснащено молниеотводом (с или без солнечных батарей).

Защита SPD предохранителями

Устройства SPD Finder могут коммутировать ток до 100 A DC (@200 V DC). Это значит, что если номинальный ток линии (Isc) ниже 100 A , нет необходимости устанавливать дополнительный предохранитель.

7Т Серия - Щитовые термостаты

Характеристики

Щитовые термостаты

- Компактный размер (Ширина 17.5 мм)
- Быстрое срабатывание, биметаллический датчик
- Широкий диапазон температурных уставок
- Большая электрическая долговечность
- Монтаж на рейку 35 мм (EN 60715)

	ниже заданной, управляющий контакт размыкается.	
Характеристики контактов		
Конфигурация контактов	1 NC	1 NO
Номинальный ток/Макс.пиковый ток А	10/10	10/10
Ном.напряжение/Макс.напряжение V AC	250/250	250/250
Номинальная нагрузка AC1 VA	2,500	2,500
Номинальная нагрузка AC15 (230 V AC) VA	250	250
Допустимаямощнсть одноразного двигателя ${ }^{\text {a }}$ (230 VAC) KW	0.125	0.125
Отключающая способность DC1:30/110/220V A	1/0.3/0.15	1/0.3/0.15
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$	500 (12/10)	500 (12/10)
Стандартный материал контактов	AgNi	AgNi
Диапазон температурных уставок		
Диапазон уставок (вентиляция) ${ }^{\circ} \mathrm{C}$	-	+0... +60
Дифференциал переключений по температуре K	-	7 ± 4
Диапазон уставок (обогрев) ${ }^{\circ} \mathrm{C}$	+0...+60	-
Дифференциал переключений по температуре K	7 ± 4	-
Технические характеристики		
Электрическая долговечность при ном. нагрузке АС1 циклов	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	$-45 \ldots+80$	$-45 \ldots+80$
Категория защиты	IP 20	IP 20
Сертификация (в соответствии с типом)	$C E$	

Информация по заказам

Пример: Серия 7 T , термостат для включения вентиляции, контакты замыкаются при превышении текушей температуры выше уставки (макс $+60^{\circ} \mathrm{C}$), Монтаж на рейку 35мм (EN 60715).
Серия

тип
$8=$ Монтаж на рейку 35 мм (EN 60715)
Колич.контактов
$1=1$ контакт
Тип питания
$0=$ электропитание не требуется

Напряжение питания
$000=$ электропитание не требуется

Технические характеристики

Изоляция согласно EN 61810-1			
Изолнция между открытыми контактами	$V A C$	500	
Клеммы			
Момент завинчивания	Nm	0.5	0.5
Макс. размер провода		одножильный провод	многожильный провод
	MM ${ }^{2}$	1x2.5	1x1.5
	AWG	1×12	1×16

Чертежи
7T. 81
Винтовой зажим

Характеристики

1-фаза 230 V

Контрольные реле для определения перенапряжения и пониженного напряжения
71.11.8.230.0010

- Фиксированное определение

перенапряжения и пониженного напряжения
возможность выбора 5 или 10-минутной задержки блокировки
71.11.8.230.1010

- Регулируемое определение перенапряжения и пониженного напряжения
- возможность выбора 5 или 10-минутной задержки блокировки
Установка на 35-мм рейку (EN 60715)
Светодиодная индикация
Позитивные предохранительные логические схемы (здоровые условия -подается питание на выходное реле)

Характеристики

3 - фаза 400 V

Контрольные реле для определения перенапряжения и пониженного напряжения
71.31.8.400.1010

- Регулируемое определение перенапряжения и пониженного напряжения
- Возможность выбора 5 или 10-минутной задержки блокировки
- Установка но 35-мм рейку (EN 60715)

Светодиодная индикация
Позитивные предохранительные логические схемы (здоровые условия -подается питание на выходное реле)

Характеристики

3 - фазы 400 V

Линейные контрольные реле
71.31.8.400.1021

- Задержка отключения пере напряжение и пониженного напряжения
- Память сбоев
71.31.8.400.2000
- Асимметрия фазы
- Чередование фаз
- Обрывфозы
- Установка но 35-мм рейку (EN 60715)

Светодиодноя индикация

- Позитивные предохранительные логические схемы (здоровые условия -подается питание но выходное релеl

Характеристики контактов
Конфигурация контактов

Номинальный ток/Макс.пиковый ток	A
Ном.напряжение/Макс.напряжение	V AC
Номинальная нагрузка АС1	VA
Номинальная нагрузка АС15 (230 V AC) VA	
Допустимая мощность однофазного двигателя (230 VAC) kW	
Отключающая способность DC1: 30/110/220 VA	
Минимальная нагрузка переключения mW (V/mA)	
Стандартный материал контактов	

Характеристики питания

Ном. напряжение $\left(U_{N}\right)$	VAC $(50 / 60 \mathrm{~Hz})$
	V DC
Номинальная нагрузка AC/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$	
Рабочий диапазон	AC

Технические параметры
Электринеская долговенность при номинал.нагрузке АС1 циклов
Уровень распознавания $\mathrm{U}_{\min } / \mathrm{U}_{\max } /$ Асимметрия
Задержка отключения/время реагирования
Помять сбоев - можно выбрать
Электроизоляция:От источника питания до измерителнной цепи
Диапазон температур

Категория защиты
Сертификация (в соответствии с типом)
71.31.8.400.1021

- 3 фазы 400 V -контроль линейного напряжения - Определяет перенапряжение и пониженное напряжение
Регулируемое отключение при задержке
- Переключение выбранной памяти сбоев

Уровень пониженного напряжения, при котором происходит автоматическое отключение $(0.8 \ldots 0.95) \cup_{N}$ - Регупируемый
Уровень перенапражения, при котором происходит
автоматическое отключение $1.15 \mathrm{U}_{\mathrm{N}}$ - Фиксированный
Длительность задержки отключения (0.1 ... 12 с)
регулируемый параметр
Память сбоев, переключатель выбора
Подтверждение сбоя путем манипулирования переключателем между положениями ВКЛ. и переключателем между положениями ВКК. и
ВБКК. и снова в положение ВКЛ., или отключением ВыКЛ. и
питания

1 перекидной контакт (SPDT)

10/15	10/15
250/400	250/400
2,500	2,500
500	500
0.5	0.5
10/0.3/0.12	10/0.3/0.12
300 (5/5)	300 (5/5)
AgCdO	AgCdO
400	400
- -	-
4/ -	4/-
$(0.8 \ldots 1.15) U_{N}$	$(0.8 \ldots 1.15) \mathrm{U}_{\mathrm{N}}$
- -	-
$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
$(0.8 \ldots 0.95) \mathrm{U}_{\mathrm{N}} / 1.15 \mathrm{U}_{\mathrm{N}} /-$	$0.7 \mathrm{U}_{\mathrm{N}} / 1.11 \mathrm{U}_{\mathrm{N}} /(-5 . . .-20) \% \mathrm{U}_{\mathrm{N}}$
(0.1...12)s / < 0.5 s	$-/<0.5$ s
Да	-
Нет -цепи являются электрически общими	Нет -цепи являются электрически общими
-20...+55	-20...+55
IP 20	IP 20
CE PG	

Характеристики

Универсальные реле проверки и контроля наличия напряжения или тока
71.41.8.230.1021 - Контроль напряжения
71.51.8.230.1021 - Контроль тока

Память нуля напряжения согласно EN 60204-7-5
Программируемый уровень напряжения для AC/DC
определение диапазона: верхние и нижние значения
верхняя уставка минус диапазон гистерезиса (5 ... 50)\% для включения
нижняя устовка плюс диапазон гистерезиса (5 ... 50)\% для включения
Память замыканий
Электроизоляция между измерительной цепью и цепью питания
Устойчивость к перебонм питания <200 мс
Широкий диапазон определения:
для напряжения: DC (15 .. .700)V, AC (15.480)V Установка но 35-мм рейку (EN 60715)

Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток \quad A
Ном.напрнжение/Макс.напрнжение VAC
Номинальная нагрузка AC1
Номинальная нагрузка AC15 (230 V AC) VA
Догустимая мощность односазного двигателя (230 V VC) kW
Отключающая способность DC1: 30/110/220 VA
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал контактов

Характеристики питания

Ном. напряжение $\left(\mathrm{U}_{\mathrm{N}}\right)$	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
	V DC
Номинальная нагрузка AC/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$	
Рабочий диапазон	AC

Технические параметры

Эпектринескан долговенность при номинал.нагрузке АС1 циклов
Уровни распознавания $\mathrm{AC}(50 / 60 \mathrm{~Hz}) / \mathrm{DC}$
Отключение/ реагирование/Задержка начала
Уровень включения уровня определения \%
Память замыканий - программируемый параметр
Электроизопғция:От источника питаниядо измерительной цепи
Диапазон температур ${ }^{\circ} \mathrm{C}$

Категория защиты
Сертификация (в соответствии с типом)
71.41.8.230.1021

Программируемое универсальное реле контроля напряжения

- Определение напряжения AC/DC -

регулируемый

- AC ($50 / 60 \mathrm{~Hz}$) (15...480)V
- DC (15...700)V
- Гистерезис вкпючения (5...50)\%
- Задержка откпючения (0.1...12)s

1 перекидной контакт (SPDT)
$10 / 15$
71.51.8.230.1021

Программируемое универсальное реле контроля тока
Может использоваться с трансформаторами тока 50/5, 100/5, 150/5, 250/5, 300/5, 400/5 или 600/5
Определение AC/DC - регулируемый параметр
$\mathrm{AC}(50 / 60 \mathrm{~Hz})(0.1 . .10) \mathrm{A}$ с трансформатором тока до 600A
DC (0.1...10)A
Гистерезис включения (5...50)\%

- Задержка отключения (0.1...12)s

Start delay (0.1...20)s

1 перекидной контакт (SPDT)
10/15
250/400
2,500
500
0.5
0.5
$10 / 0.3 / 0.12$
/0.3/0.12
$300(5 / 5)$
(5/5)
AgCdO

230
-

$4 /-$
/ -
$(0.85 \ldots 1.15) U_{N}$
$100 \cdot 10^{3}$
(0.1...10) А с трансформатором тока до $600 \mathrm{~A} /(0.1 \ldots 10) \mathrm{A}$
(0.1...12)s / < 0.35 s / (0.1...20)s
($0.1 \ldots$. 12) $/<0.35 \mathrm{~s} /<0.5 \mathrm{~s}$
5... 50

Дa

Да	Да
Да	

Да
Да
$-20 \ldots+55$

71 Серия - Контрольные реле 10 A

Характеристики

Термисторное репе опредепения температуры для промышпенного применения 71.91-1 контакт, без памяти отказов 71.92 - 2 кантакта, с памятью отказов

- Защита от перегрузок в соответствии с EN 60204-7-3
Положительная предохранительная логическая схема - размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона Модуль промышленного стандарта Индикация состояния с помощью светодиода
Установка но 35-мм рейку (EN 60715)

Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток A
Ном.напряжение/Макс.напряжение V AC
Номинальная нагрузка AC1 VA
Номинальная нагрузка AC15 (230 V AC) VA
Допустиман мощнюсть однофазного двигателя (230 VAC) kW
Отключающая способность DC1: 30/110/220 VA
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал контактов
Характеристики питания

Ном. напряжение $\left(\mathrm{U}_{\mathrm{N}}\right)$	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
	$\mathrm{VAC/DC}$
Номинальная нагрузка AC/DC VA (50 Hz $) / \mathrm{W}$	
Рабочий диапазон	AC

Технические параметры

Электрмнескан долговенность при номинал.нагрузке AC1 циклов
Определение РТС: Короткое замыкание/Температура ОК
Сброс/Отключение РТС

Длительность задержки/время активации
Память отказов - выбирается переключателем
Электроизоляция: От источника питаниядо измерительной цепи
Диапазон температур ${ }^{\circ} \mathrm{O}$

Категория защиты
Сертификация (в соответствии с типом)
71.91.x.xxx. 0300

- Термисторное реле

1 нормально разомкнутый контакт питание 24 V AC/DC, или 230 V AC
Определение температуры с положительным температурным коэффициентом (PTC) Выявление короткого замыкания с помощью РТС
Выявление обрыва провода с помощью РТСие обрыва провода с помощ

1 NO (SPST-NO)
$10 / 15$

71.92.x.xxx. 0001

- Термисторное реле с памятью отказов 2 перекидных контакта питание 24 V AC/DC, или 230 V AC
Определение температуры с положител ьным температурным коэффициентом (PTC) Память отказов - выбирается переключотелем Сброс с помощью кнопки Reset или при сбое питания
Выявление короткого замыкания с
помощью PTC
Выявление обрыва провода с помощью РТС

$$
\begin{aligned}
& \mathrm{L}(+ \\
& \mathrm{N}(-)
\end{aligned}
$$

$\mathrm{U}=230 \mathrm{~V} \mathrm{AC}$ or

2 перекидных контакта (DPDT)

$10 / 15$
$250 / 400$
2,500
500
0.5
$10 / 0.3 / 0.12$
$300(5 / 5)$
AgCdO
2230
24

$1 / 0.5$
$(0.85 \ldots 1.15) \mathrm{U}_{\mathrm{N}}$

-
$100 \cdot 10^{3}$
$<20 \Omega />20 \Omega \ldots<3 \mathrm{k} \Omega$
$<1.3 \mathrm{k} \Omega />3 \mathrm{k} \Omega$

$<1.3 \mathrm{k} \Omega />3 \mathrm{k} \Omega$
$-/<0.5 \mathrm{~s}$
Да

Да
$-20 \ldots+55$
$-/<0.5 \mathrm{~s}$

$250 / 400$	
2,500	

2,500	
500	
0.5	

0.5
$10 / 0.3 / 0.12$
$300(5 / 5)$

AgCdO
230

)	230
	24
N	$1 / 0.5$
	$(0.85$

-

$100 \cdot 10^{3}$
$<20 \Omega />20 \Omega \ldots<3 \mathrm{k} \Omega$
$<1.3 \mathrm{k} \Omega />3 \mathrm{k} \Omega$
$-/<0.5 \mathrm{~s}$
-
Да
$-20 \ldots+55$
$-20 \ldots+55$
IP 20

Информация по заказам

Пример: Универсальнае реле контроля напряжения с жидкокристаллическим дисплеем для определения напряжения AC/DC, с 1 перекидным (SPDT) контактом 10 A 250, напряжение питания 230 В, программируемой длительностью задержки и памятью отказов.

Тип

1 = контраль 1-Фазного линейнога АС
$3=$ контраль 3-Фазного линейнога AC
4 = универсальное определение наличия нап яженияAC/DC
5 = универсальное определение наличия $\mathrm{AC} / \mathrm{DC}$
$9=$ Термисторное реле (температура Кантроль с памащью РТС-термистора)

Кол-во контоктов

$1=1$ перекидной контакт (SPDT),

типы 71.11, 31, 41, 51
$1=1$ НО-контакт (SPST-NO), тип 71.91
2 = 2 перекидных контакта (DPDT), тип 71.92

Источник токо

$0=$ AC ($50 / 60 \mathrm{~Hz}) / D C$
$8=$ AC ($50 / 60 \mathrm{~Hz})$

Напряжение сети

$024=24 \mathrm{~V}$ AC/DC
$230=230 \mathrm{~V}$
$400=400 \mathrm{~V}$

Дополнительные функции

$\mathrm{O}=$ базовая функция
1 = регулируемое значение определения
2 = регулируемый: Асимметрия, обрыв фазы, чередование фаз

Технические параметры

Изоляция				
Изоляция в соответствии с EN 61810-1		Номинальное напряжение изоляциии V		250
		Номинальное напряжение пробо	боя kV	4
		Уровень загрязнения		3
		Категория перенапряжения		III
Электрическоя прочность (А 1, А2, АЗ, В 1, В2), и зажимы контоктов $(11,12,14)$ и зажимы (ZI, Z2)	, VAC	2,500		
	зажимы контоктов $(11,12,14)$ и зажимы (ZI, Z2) $\mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$	6		
Электрическая прочность при открытом контокте V AC		1,000		
Параметры электромагнитного импульса				
Тип теста		Базовый стандарт		
Электростотический розряд	контактный разряд	EN 610004-2		8 kV
	воздушный разряд	EN 610004-2		8 kV
Злектромагнитное поле РЧ-диапазона (80...1,000) MHz		EN 610004-3		$3 \mathrm{~V} / \mathrm{m}$
Быстрый переходный режим (разрыв) (5-50 ns, 5 kHz) на ($\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~B} 1, \mathrm{~B} 2)$ и ($\mathrm{Z} 1, \mathrm{Z} 2)$		EN 610004-4		2 kV
Импульсы (1.2/50 $\mu \mathrm{s}$) на ($\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~B} 1, \mathrm{~B} 2$) и (Z1, Z2)	общий режим	EN 610004-5		4 kV
	дифффференциальный режим	EN 610004-5		4 kV
Радиочастотный синфазный режим ($0.15 \div 80 \mathrm{MHz}$) для A 1 - A 2		EN 610004-6		10 V
Радиационное и кондуктивное излучение		EN 55022		класс B
Прочее				
Зночения тока и напряжения на зажимах Z1 Z2	Тип 71.11	Связь с диапазоном времени V/mA		$230 \mathrm{~V} /$ -
	Тип 71.91, 71.92	Измерение температуы PTC V/mA		$24 \mathrm{~V} / 2.4$
Максимальная дпина провода от зажимов питания/ Измерительные клеммы	Тип 71.11, 71.31	Сввзьмежду контактахи и временным диапазоном M		150 / -
	Тип 71.41	Измерение напряжения м		150/50
	Тип 71.51	Измерение тока м		150/50
(Емкость монтожа не более $10 \mathrm{nF} / 100 \mathrm{~m}$)	Тип 71.91, 71.92	Измерение температуры РTC m		$50 / 50$
Принцип измерения	$\begin{aligned} & \text { Тип 71.11, 71.31, } 71.41,71.51, \\ & 71.91,71.92 \end{aligned}$	Значение измерений представляет собой среднее арифметическое 500 индивидуальных измерений, произведенныхв течение 100 мс. Размыкания продолжительностью менее 200мс игнорируются.		
Предохранительные логические схемы	$\begin{aligned} & \text { Тип 71.11, } 71.31,71.41,71.51, \\ & 71.91,71.92 \end{aligned}$	Положительные предохранительные логические схемы - Если контролируемое зночение ноходится в пределах допустимого диапазона, контакт замыкается.		
Время реагирования (после применения напряжения питания)	$\begin{gathered} \text { Тип 71.11, 71.31, 71.41, 71.51, } \\ \quad 71.91,71.92 \\ \hline \end{gathered}$	$\leq 0.5 \mathrm{~s}$		
Потери мощности	без нагрузки контактов W	4		
	при номинальном токе W	5		
Допустимый диапазон температур хранения ${ }^{\circ} \mathrm{C}$		$-40 \ldots+85$		
		IP 20		
(28) Момент завинчивания	Nm	0.8		
Макс. размер провода		одножильный кабель	многожильный кабель	
	Mm 2	0.5... 2×2.5)	(2×1.5)	
	AWG	$20 . . .(2 \times 14)$	(2×16)	

Функции

Комтрольное реле	Типы												Время			Напряжение сети			Ширина модуля		
						\qquad				Термисторное реле (РТС)						$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \text { } \\ & \text { d } \end{aligned}$	$$	$\begin{aligned} & 0 \\ & > \\ & \hline \\ & \hline+ \end{aligned}$			Контакт реле, 250 V AC/10A
71.11.8.230.0010	-												-				-		-		$\begin{aligned} & 1 \mathrm{CO} \\ & \text { SPDT } \end{aligned}$
71.11.8.230.1010	-										-		-				-		-		$\begin{aligned} & 1 \mathrm{CO} \\ & \text { SPDT } \end{aligned}$
71.31.8.400.1010		-									-		-					-	-		$\begin{aligned} & 1 \mathrm{CO} \\ & \text { SPDT } \end{aligned}$
71.31.8.400.1021		-									-	-		-				-	-		$1 \mathrm{CO}$ SPDT
71.31.8.400.2000			-	-	-						-							-	-		1 CO SPDT
71.41.8.230.1021	-					-	-				-	-		-			-		-		$1 \mathrm{CO}$ SPDT
71.51.8.230.1021								-	-		-	-		-	-		-		-		$1 \mathrm{Co}$ SPDT
71.91.0.024.0300										-	-					-				-	$\begin{gathered} 1 \text { NO } \\ \text { SPST-NO } \end{gathered}$
71.91.8.230.0300										-	-						-			-	$\begin{gathered} 1 \text { NO } \\ \text { SPST-NO } \end{gathered}$
71.92.0.024.0001										-	-	-				-				-	$\begin{aligned} & 2 \mathrm{CO} \\ & \text { DPDT } \end{aligned}$
71.92.8.230.0001										-	-	-					-			-	$2 \mathrm{CO}$ DPDT

Объяснения маркировки реле и светодиодного/жидкокристаллического дисплея

Контрольное реле без жидкокристаллического дисплея	
Положение ON	Светодиод горит непрерывным зеленым светом: напряжение питания включено и система измерения активна.
DEF	По умолчанию: выявленное значение выходит за рамки допустимого диапазона (ассиметрично, согласно пока за ниям светодиода ASY). Светодиод горит мигающим красным светом: идет время задержки, см. функциональную схему. Светодиод горит непрерывным красным светом: выходное реле отключено, контакт 11-14 (6-2) разомкнут.
ASY	Асимметрия фаз выходит за ра мки предварительно заданного диапазона . Светадиод горит непрерывным светом: выходное реле отключено, контакт 11-14 (6-2) разомкнут.
LEVEL	Выбранный диапазон в \% значении.
TIME	Время задержки мин. (в минутах) или с (в секундах).
MEMORY ON	Память отказов включена: состояние выходного реле после замыкания - контакт 11-14 (6-2) разомкнут- будет поддерживаться, контролируемое значение возвращается в пределы допусти мо го диапазона. Замыкание устраннется путем ма нипулир ова ния переключателя из положения ON в положение OFF и снова в положение ON, или путем атключения питания (71.31.8.400.1021 и 71.92.x.xxx.0001), или с помощью кнопки "RESET" (71.92.x.xxx.0001).
MEMORY OFF	Память отказов отключена: состояние выходных контактов останется в положении "замыкание" - контакт 11-41 (6-2) разомкнут - в то время как контролируемое значение остается за предепами допустимого диапазона. Как топько контропируемое значение ве рнется в п редепы до пустимого диапазона, на контакт будет с н ова подано питание. Повторный запуск ко нтрол ируемого обо рудова ния будет произведен автоматически.

Контрольное реле с жидкокристаллическим дисплеем			
SET/RESET	Реле 71.41 и 71.51 . Устанавливает и сбрасывает программируемые значения - см. инструкции по использованию в упаковке.		
SELECT	Реле 71.41 и 71.51 . Осуществляет выбор необходимого параметра для программирования - см. руководство по использованию.		
DEF	По умолчанию, светодиод горит непрерывным красным светом или мигает.		
PROG Modus	Чтобы войти в режим программирования, одновременно нажмите кнопки "SET/R ESET" и "SEIECT" и удерживайте в те чение 3 секунд. Слово "prog" появитс я на ди с плее на 1 секунду. "SELECT" позволяет выбрать "AC" или "DC", по сле чего выб ор нужно подтвердить с по мо щью кнопки "SET/R ESET". Последовательное нажатие кнопки "SEIECT" выводит на экран варианты выбора Up, или Uplo. С помо щью кнопки "SET/RES ET" выберите необ ходимый вариант. Следующим шагом является задание соответствующих значений и выбор функции па мяти замыканий (с помощью "ДА" или "НЕТ"). После завершения всех операций программирования на дисплее появится сообщение "end" ("конец").		
Краткая инструкция по програ ммированию	После повторного на ж атия кнопки "SET/RESET" на дисплее появится з начение измерения, или "0", если к Z1 и Z2 ничего не подключено (5 и 9). Если прервать программирование прежде, чем на экране п ояв ится "епd", предыдущие установки программирования останутся без изменений после исчезновения напряжения питания.		
Запрос программы	Нажатие к нопки "SELECT" в течение не менее 1 секунды вызывает "режи м запроса програ мм ы". При последовательном нажатии кнопки "SELECT" на дисплее появляются запрограмммированный режим и значения.		
Мигающая М (память)	Память отказов задействована (подтверждение замыкания и сброс осуществляется 3-секундным нажатием кнопки "SET/RESET").		
Жидкокр исталлический дисплей	V = Вольт A = ампер Up = верхний предел (с гистерезисом в нисходящем направлении) Lo = нижний предел (с гистерезисом в восходящем направлении) $U_{\mathrm{Lo}}=$ верхний и нижний предел - определение диапазона	$\begin{aligned} \text { Level }= & \text { значение } \\ \text { Hys }= & \text { гистерезис } \\ M & =\text { Память } \\ & \text { (замыканий) } \\ \text { Yes }= & \text { да - с памятью } \\ \text { no }= & \text { нет - без памяти } \end{aligned}$	$t_{1}=T_{1}$ - время, в течение которого кратковременные колебания не учтываются $\mathrm{t}_{2}=\mathrm{T}_{2}-$ (контрольное реле 71.51) время, в течение которого броски т ока при включении не учитываются

71 Серия - Контрольные реле 10 A
Состонние светодиода/ жидкокристаллического дисплед/ соответствующие рекомендации

Тип	Режим запуска	Нормальное функционирование	Неwтатный режим		Resel (Сбрас)
71.11.8.230.0010 71.11.8.230.1010 71.31.8.400.1010		Нормальное функционирование: Уставка ОК 11-14 зомкнут	\square Идет время Т. Уставка не имеет значения 11-14 разомкнут Замкнется по истечении T, если уставка будет ОК	\square После истечения Т Уставко не ОК 11-14 разомкнут Замкнется, если уставка будет OK	
71.31.8.400.1021 Memory OFF		Нормальное функционирование: Уставка ОК 11-14 зомкнут	17 И Идет время Т Уставка не ОК 11-14 замкнут	\square После истечения Т Уставко не ОК 11-14 разомкнут Замкнется, если уставка будет OK	
		Нормальное функциснирование: Уставка ОК 11-14 зомкнут	Идет время Т \square Уставка не ОК 11-14 замкнут	\square После истечения \top Уставко не ОК 11-14 разомкнут Не замкнется при нажатии RESET	\square После истечения ${ }^{\square}$ Уставко не ОК 11-14 разомкнут Замкнется при нажатии RESET
71.31.8.400.2000		Нормальное функционирование: Уставка ОК 11-14 зомкнут	\square Напряжение питания на A1(1) и / или A2(5) отсутствует 11-14 разомкнут, Замкнется, если будет восстановлено напряжение питания и уставка будет OK Неправильное чередование фаз или обрыв фазы или напряжение на A1(1) и/или A2(5) is $>1.11 U_{\mathrm{N}}$ 11-14 разомкнут Замкнется, если уставка будет OK	\square Асимметрия фазы 11-14 разомкнут \square Замкнется, если уставка будет OK	
$\begin{aligned} & \text { 71.41.8.230.1021 } \\ & \text { Memorv OFF } \end{aligned}$		На дисплее отображается замеренное значение Нормальное функционирование: Уставка ОК 11-14 замкнут	На дисплее отображается замеренное значение \square Идет времн Т Уставка не ОК 11-14 зомкнут	На дисплее отображается замеренное значе ние После истечения Т Уставка не ОК 11-14 разомкнут Замкнется, если уставка будет OK	
$\begin{aligned} & \text { 71.41.8.230.1021 } \\ & \text { Memory } \mathrm{ON} \end{aligned}$		На дисплее отображается замеренное значение \square Нормальное функционирование: Уставка ОК 11-14 замкнут	На дисплее отображается замеренное значение ПППП Идет времн Т Уставка не ОК 11-14 зомкнут	М мигает на дисплее На дисплее отображается замеренное значение После истечения \top Уставко не ОК 11-14 розомкнут Не замкнется при нажатии RESET	М на дисплее горит непрерывным светом На дисплее отображается заме ренно е значение После истечения Т Уставка ОК 11-14 розомкнут Замкнется при нажатии RESET
$\begin{aligned} & \text { 71.51.8.230.1021 } \\ & \text { Memory OFF } \end{aligned}$	На дисплее отображается замеренное значение \square Идет врема Т2 Уставка не имеет значения 11-14 замкнут	На дисплее отображается замеренное значение \square Нормальное функционирование: Уставка ОК 11-14 замкнут	На дисплее отображается замеренное значение \square Идет время Т Уставка не ОК 11-14 зомкнут	На дисплее отображается замеренное значе ние После истечения Т Уставка не ОК 11-14 разомкнут Замкнется, если уставка будет OK	
$\begin{aligned} & \text { 71.51.8.230.1021 } \\ & \text { Memory ON } \end{aligned}$	На дисплее отображается замеренное значение \square Идет время T2 Уставка не имеет значения 11-14 замкнут	На дисплее отображается замеренное значение Нормальное функционирование: Уставка ОК 11-14 замкнут	На дисплее отображается замеренное значение \square Идет время Т Уставка не ОК 11-14 зомкнут	М мигает на дисплее На дисплее отображается замеренное значение После истечения \top Уставко не ОК 11-14 розомкнут Не замкнется при нажатии RESET	М на дисплее горит непрерывным светом На дисплее отображается заме ренно е значение После истечения Т Уставка ОК 11-14 розомкнут Замкнется при нажатии RESET
71.91.x.xxx. 0300		Нормальное функционирование: Уставка ОК 11-14 замкнут	Слишком высокая температура ипи обрыв пинии PTC Ити короткое замыкание РТС $11-14$ розомкиут Замкнется, если уставко будет ОК		
		Нормальное функционирование: Уставка ОК 11-14 замкнут	Слишком высокая температура ипи обрыв пинии PTC Ипи короткое замыкание PTC 11-14 розомкиут Замкнется, если уставко будет OK		
		Нормальное функционирование: Уставка ОK 11-14 замкнут	\square Слишком высокая температура ипи обрыв пинии PTC Ипи короткое замыкание PTC 11-14 розомкиут		Темперотуро ОК 11-14 разомкнут \square Замкнется при нажатии RESET

Функции

Функции

Функции

Функции

(1) finder

Характеристики

Реле контроля уровня для проводящих

 жидкостей72.01 - Регулируемый диапазон чувствительности
72.11 - Фиксированный диапазон чувствительности
Функции наполнения и дренажа
Светодиодная индикация
Двойная изоляция между ($6 \mathrm{kV}-1.2 / 50 \mu \mathrm{~s}$):

- цепями питания и контактами
- цепями питания и электродами
- электродами и контактами

Установка на 35-мм рейку (EN 60715) Контроль заданного значения уровня или области значений в пределах от минимального до максимального 72.01 версии для электропитания 400 В 72.01 доступны также с Регулируемый диапазон чувствительности (5...450) k Ω

ПО КЛАССИФИКАЦИИ UL, МОЩНОСТЬ в Л.С.И НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Характеристики контактов

Конфигурация контактов
Номинальный ток/Макс.пиковый ток
Ном.напряжение/Макс.напряжение V AC
Номинальная нагрузка AC
Номинальная нагрузка AC15 (230 V AC) VA
Допустиман мощность однофаззного двигателя (230 VAC) kW
Отключающая способность DC1: 30/110/220 VA
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал контактов
Характеристики питания

Ном. напряжение $\left(\mathrm{U}_{\mathrm{N}}\right)$	VAC
	VDC
Номинальная нагрузка AC/DC VA (50 Hz $) / \mathrm{W}$	
Рабочий диапазон	AC

Технические параметры

Электринеская долговечность при номинал.нагрузке AC1 циклов

Напряжение на электроде	V AC
Ток через электрод	mA

Время срабатывания с
Максимальный диапазон чувствительности $\mathrm{k} \Omega$
Изоляцин между входом и выходом (1.2/50мкс) kV
Диапазон температур

Категория защиты
Сертификация (в соответствии с типом)
V
A
.
N
,
B
72.01

Регулируемый диапазон
чувствительности $\{5 . .150\rangle \mathrm{k} \Omega$
Выдержка времени (0.5 с или 7 с) . Функции наполнения или дренажа

FL $=$ Наполнение выдержка времени 7 с FS = Наполнение выдержка времени 0.5 c ES = Дренаж - выдерж ка времени 0,5 с EL = Дренаж - выдержка времени 7 с

72.11

Фиксированное пороговое значение $150 \mathrm{k} \Omega$ Фиксированная выдержка времени 1 с - Функции наполнения или дренажа

1 CO (SPDT)
1 CO (SPDT)
\square
16/30
1

16/30
2
500
Ag
24-110
$-$
2
)
\square
\square
\qquad

\square
\square
1
100
$100 \cdot 10^{3}$
$100 \cdot 10^{3}$

0.2
$0.5-7$ (выборочная функция)
$5 \ldots 150$ (регулируемая функция)

4
0.2
1

$5 \ldots 150$ (регулируеман функция)
6
$-20 \ldots+60$
IP 20

	150 (фиксировано)
	6
	$-20 \ldots+60$
IP20	

Характеристики

3 фазы - Реле контроля чередования и обрыва фаз
Определение напряжения
(U_{N} от 208 V до $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$)
. Контроль обрыва фазы, до восстановления фазы
Безопасная логическая схема - при аварии контакты реле размыкаются
Компактные габариты (ширина реле 17.5 мм)
Установка на 35-мм рейку (EN 60715)
Европейский патент на инновационный принцип контроля 3-х фазного напряжения и системы индикации аварий
72.31

Контроль чередования фаз - Контроль обрыва фазы

Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток А
Ном.напряжение/Макс.напряжение V AC
Номинальная нагрузка AC1 VA

Номинальная нагрузка AC15 (230 V AC) VA
Допустимая мощность одноразного двиателя (з30 VAC) kW
Отключающая способность DC1: 30/110/220 VA
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал контактов

Характеристики питания

Ном. напряжение (U_{N}) V AC 3 ~	208... 480
Частота Hz	50/60
Ном. мощность VA $50 \mathrm{~Hz} / \mathrm{W}$	8/1
Рабочий диапазон VAC 3~	170... 500
Технические параметры	
Электрнеская долтозеннстьпри номинал.нагүузкеАС1 циктов	$100 \cdot 10^{3}$
Время отключения/срабатывания с	<0.5/<0.5
Диапазон температур ${ }^{\circ} \mathrm{C}$	-20...+50
Категория защиты	IP20
Сертификация (в соответствии с типом)	CEPG criou

Информация по заказам

Реле контроля уровня

Пример: 72-ая серия реле контроля уровня с регулируемым уровнем чувствительности, напрнжение питания (230...240)V AC.

Все версии

72.01.8.024.0000
72.01.8.024.0002
72.01.8.125.0000
72.01.8.240.0000
72.01.8.240.0002*
72.01.8.400.0000
72.01.9.024.0000
72.11.8.024.0000
72.11.8.125.0000
72.11.8.240.0000
72.11.9.024.0000

* Для удельной электропроводимости до 2 мкс или сопротивления 450 kOhms

Реле контроля

Пример: реле контроля 3-фазного напряжения, контроль чередования и обрыва фаз, напряжение питания (208...480) V AC 3~.

Технические параметры для 72.01 и 72.11

Изоляция				
Изоляция			Диэлектрическая прочность	Импульс (1.2/50 $\mu \mathrm{s}$)
	между источником и контактами		$4,000 \mathrm{~V}$ AC	6 kV
	между электродами, Z 1-Z2 и ис	ииком*	$4,000 \mathrm{~V}$ AC	6 kV
	между контактами и электродам		$4,000 \mathrm{~V}$ AC	6 kV
	между открытыми контактами		1,000 V AC	1.5 kV
Спецификация ЕМС				
Тип проверки			Ссылка на стандарт	
Электростатический разряд	контактный разряд		EN 61000-4-2	4 kV
	воздушный разряд		EN 61000-4-2	8 kV
Радио-частотное электромагнитное поле ($80 \div 1000 \mathrm{MHz}$)			EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
Нестационарный процесс (разрыв) (5-50 ns, 5 kHz)			EN 61000-4-4	4 kV
Колебания (1.2/50 $\mu \mathrm{s}$) при подаче питания			EN 61000-4-5	4 kV
Радиочастотный обычный режим (0.15 .80 MHz) при подаче питания на клеммы			EN 61000-4-6	10 V
Радиационное и кондуктивное излучение			EN 55022	класс B
Прочее				
Потребление на клемме Z 1 и Z2		mA	<1	
Потери мощности	без нагрузки	W	1.5	
	при нормальном значении тока	W	3.2	
(7)\% Момент завинчивания		Nm	0.8	
Макс. размер провода	mm^{2}		Одножильный кабель	Многожильный кабель
			1x6/2x4	1x4/2x2.5
		AWG	1x10/2x12	1×12/2x14
Макс. длина кабеля между электродами и реле m			200 (макс. емкость $100 \mathrm{nF} / \mathrm{km}$)	

* Для приборов с напряжением питания 24 V DC, (типы 72.x1.9.024.0000) электрическая изоляция между электродами отсутствует. Следовательно, для приложений SELV (сверхнизкое безопасное напряжение), необходимо применнть источники питания SELV (без заземления). В случае применения источника питанин PELV (защищенное сверхнизкое напрнжение) с заземлением, следует принять меры к защите реле контроля уровня от вредного влияния циркулирующих токов путем заземления электродов. Однако, такой проблемы не существует для приборов с питанием 24 V AC (типы $72 . \times 1.8 .024 .0000$), которые благодаря внутренней изоляции трансформатора, гарантируют надежную изолнцию между электродами и электропитанием.

Технические параметры для 72.31

Изоляция			
Изоляция		Диэлектрическая прочность	Импульс (1.2/50 $\mu \mathrm{s}$)
между источником и контактами		$3,000 \mathrm{~V}$	5 kV
между открытыми контактами		$1,000 \mathrm{~V}$	1.5 kV
Спецификация EMC			
Тип проверки		Ccblлка на стандарт	
Электростатический разряд		EN 61000-4-2	4 kV
разряд воздушный разряд		EN 61000-4-2	8 kV
Нестационарный процесс (разрыв) (5-50ns, 5 kHz) on A1, A2, A3		EN 61000-4-4	2 kV
Колебания (1.2/50 $\mu \mathrm{s}$) дифференциальный режим		EN 61000-4-5	4 kV
Прочее			
Время запуска (контакт НО замыкается при подаче питания)	S	<2	
Уровень восстановленин (макс.)		$\leq 80 \%$ от среднего значенин 2 других фаз	
Потери мощности без нагрузки	W	1	
при нормальном значении тока	W	1.4	
(fit) Момент завинчивания	Nm	0.8	
Макс. размер провода		Одножильный кабель	Многожильный кабель
	mm^{2}	1x6/2x4	1x4 / 2x2.5
	AWG	1x10/2x12	1x12/2x14

Функции для 72.01 и 72.11

выбора функции
дренажа (для типа 72.11)

Функции и время срабатывания

Tип $\mathbf{7 2 . 0 1}$	Tип $\mathbf{7 2 . 1 1}$
FL = Наполнение выдержка времени 7 c.	$\mathrm{F}=$ Контроль уровня при наполнении Перемычка отсутствует.
$\mathrm{FS}=$ Наполнение выдержка времени 0.5 c.	Фиксированная задержка включения 1 c.
$\mathrm{ES}=$ Дренаж - выдержка времени 0.5 c.	$\mathrm{E}=$ Контроль уровня при дренаже Перемычка установлена.
$\mathrm{EL}=$ Дренаж - выдержка времени 7 c.	

ФУНКЦИЯ НАПОЛНЕНИЯ

Диаграмма работы Вариант с тремя электродами

ФУНКЦИЯ ДРЕНАЖА
Диаграмма работы

Приложения для 72.01 и 72.11

Функция наполнения

Вариант с 3 электродами и контактором, подключенным к выходному контакту

Функция дренажа
Вариант с 3 электродами и двигателем насоса, подключенным непосредственно к выходному контакту

Действие реле уровня 72 серии основано на измерении сопротивления жидкости между общим электродом ВЗ и электродами верхнего и нижнего уровня (В 1 и В2)
В металлическом резервуаре измерение может проводиться электродом ВЗ.

Реле используется в жидкостях обладающих достаточным удельным сопротивлением, таких как:

- водопроводная вода
- родниковая вода
- дождевая вода
- морская вода
- жидкости с низким содержанием алкоголя
- вино
- молоко, пиво , кофе
- сточные воды
- жидкие удобрения.

Реле не используется в жидкостях:

- дистиллированная вода
- бензин
- масло
- жидкости с высоким содержанием алкоголя
- сжиженный газ
- керосин
- этиленгликоль
- краска

функции для 72.31

$\begin{aligned} \text { L1, L2, L3 }= & \text { Напряжение } \\ & \text { питания } \\ = & \text { Контакт } 11-14 \end{aligned}$	Диодноя индикация		Напряжение	HO контакт открыт	Контакт	
			питания		Откр.	Закр.
		Напряж. питания ВЫКЛ	ВЫКЛ			
	T \quad - $\square_{\text {- }}$	- Неверное чередование фаз - Обрыв фазы	ВКЛ		11-14	11-12
		Нормальная работа	ВКЛ	закрыт	11-12	11-14

Аксессуары для 72.01 и 72.11

072.31

Подвесные электроды для токопроводящих жидкостей в комплекте с кабелем. Используются для контрола уровня в скважинах и резервуарах без давления. Включите в заказ нужное количество электродов дополнительно к реле.

- Электоры, пригодные для применения в пищевой промышленности (в соответствии с Европейской директивой 2002/72 и FDA глава 21 часть 177):

Длина кабеля: $6 \mathrm{~m}\left(1.5 \mathrm{~mm}^{2}\right)$	072.01 .06
Длина кабеля: $15 \mathrm{~m}\left(1.5 \mathrm{~mm}^{2}\right)$	072.01 .15

- Электроды для плавательных бассейнов с высоким содержанием хлора или бассейны с морской водой:

Длина кабеля: $6 \mathrm{~m}\left(1.5 \mathrm{~mm}^{2}\right)$	072.02 .06
Технические характеристики	${ }^{\circ} \mathrm{C}$
Максимальная температура жидкости	+100
Материал электродов	Нержавеющая сталь (AISI 316L)

Подвесной электрод
Закажите требуемое количество электродов дополнительно к реле.
072.31

Технические характеристики
Макс.температура жидкости $\quad{ }^{\circ} \mathrm{C}+80$

Держатель кабеля	mm
Материал электродов	Нержавеющая сталь (AISI 316L)

Макс.усилие завинчиванин	Nm	0.7
Макс.размер провода	mm^{2}	1×2.5
	AWG	1×14
Длина зачистки провода	mm	9

Аксессуары для 72.01 и 72.11

Напольный датчик протечки служит для обнаружения и сигнализации наличия воды на полу.
Технические характеристики

Материал электрода		Нержавеющая сталь (AISI 316L)	
Клеммы для подключения			
Макс.усилие завинчивания	Nm	0.8	
Макс.размер провода		Одножильный кабель	Многожильный кабель
	mm^{2}	$1 \times 6 / 2 \times 6$	$1 \times 6 / 2 \times 4$
	AWG	$1 \times 10 / 2 \times 10$	$1 \times 10 / 2 \times 12$
Длина зачистки провода	mm	9	
Прочие характеристики			
Зазор между электродами и полом	mm	1	
Диаметр винта для крепления к полу		Makc. M5	
Макс. диаметр кабеля	mm	10	
Макс. длина кабеля от датчика до реле	m	200 (с емкостным сопротивлением $100 \mathrm{nF} / \mathrm{km}$)	
Макс. температура жидкости	${ }^{\circ} \mathrm{C}$	+100	

Напольный датчик протечки подключать к клеммам B1 и ВЗ реле контроля уровня 72.01 или 72.11, задать функцию дренажа (ES или E соответственно).

Для применения с системами холодоснабжения рекомендуется использовать типы 72.01.8.024.0002 или 72.01.8.230.0002 (диапазон чувствительности $5 . . .450 \mathrm{kOhm}$).

Функции

Z1, Z2 только для типов 72.11

072.51

Держатель электрода с двухполюсным соединением: один полюс соединяется непосредственно с электродом, второй соединяется с заземляющим изоляционным проводом. Может использоваться в металлических резервуарах с соединением G3/8. Держатель поставляется без электрода. Артикульный номер для заказа держателя дополнительный к артикулу реле.
Технические характеристики

Максимальная температура жидкости	${ }^{\circ} \mathrm{C}$	+100
Максимальное давление в резервуаре:	бар	12
Диаметр кабеля	мм	$\varnothing \leq 6$
Материал электродов	Нержавеющая сталь (AISI 316L)	

Аксессуары для 72.01 и 72.11

072.53
$\left.\begin{array}{l|l}\hline \text { Держатель электрода с тремя полюсами. Держатель поставляется без электрода. } & \\ \text { Артикульный номер для заказа держателя дополнительный к артикулу реле . }\end{array}\right) 072.53$

Электрод и электродный соединитель, несколько электродов могут быть соединены для достижения необходимой длины.
Технические характеристики
Электрод 500 мм , М4, нержавеющая сталь 072.500

Соединитель электродов, М4, нержавеющая сталь
072.501

При мер соединения электродов.

Электродный разделитель

Примечания к приложениям для 72.01 и 72.11

Применения

В основном данные реле применяются для измерения и контроля уровня проводящих жидкостей. Возможность выбора вариантов применения позволяет использовать реле при наполнении и дренаже, в обоих случаях в основу работы реле положен принцип « положительной логики ". Контроль уровнн можно осушествлять по отношению к единично заданному уровню, используя два электрода, или по заданному диапазону значений от минимального до максимального порога уставки, используя 3 электрода. Дополнительной возможностью использования реле типа 72.01 с регулируемой уставкой является измерение удельной проводимости (удельного сопротивления) жидкости.

Положительная логика, обеспечивающая надежную работу реле. Работа реле данной серии основана на принципе замыкания нормально открытого контакта, который используется для управления насосом при наполнении или дренаже. Следовательно, процесс наполнения (дренажа) прекратиться в случае потери питания реле.

Переполнение резервуара при наполнении.

Чтобы не допустить переполнения резервуара при наполнении необходимо принимать во внимание следующие факторы:

- производительность (эксплуатационные параметры, рабочие характеристики) насоса
- уровень расхода в резервуаре
- положение электрода верхнего уровня (единичного электрода)
- выдержку времени срабатывания реле

Вероятность переполнения резервуара снижается с уменьшением выдержки времени, но при этом увеличивается заданный порог срабатывания.

Предотвращение работы в пустом резервуаре при дренаже.
Чтобы н е допустить продолжения работы системы в осушенном резервуаре также необходимо принимать во внимание факторы обозначенные выше.
В частности, риск работы в пустом резервуаре снижается с уменьшением выдержки времени, но при этом также увеличивается заданный порог срабатывания.

Время срабатывания

В легкой промышленности ...используются резервуары небольших объемов и, как следствие, для обеспечения быстроты действия реле при изменении уровня задается небольшая выдержка времени срабатывания. В тяжелой промышленности находят применение более объемные резервуары и мощные двигатели насосов, для которых предлагается использовать реле типа 72.01 с длительной выдержкой времени (7c) для исключения частых срабатываний реле.

Электрическая долговечность выходных контактов

Чем больше расстояние между электродами наибольшего и наименьшего уровня, тем выше электрическая долговечность выходных контактов (вариант с тремя электродами).
Чем меньше это расстояние или ниже уровень электрода(вариант с двумя электродами), тем чаще будет происходить переключение контакта, что, соответственно уменьшает электрическую долговечность. Таким образом, большая выдержка времени повышает, а маленькая сокращает электрическую долговечность.

Управление насосом

Однофразные двигатели насосов небольшой мощности до 0.55 кВт, 230 V переменного тока могут иметь управление непосредственно от выходного контакта реле уровня.
В случае необходимости частых переключений для управления насосом желательно предусматривать дополнительное реле с более мощными контактами или контактор. Для управления мощными одно или трехфразными двигателями насосов необходимо предусматривать промежуточный контактор.

Электроды и длины кабелей.
Обычно для измерения уровня или диапазона между наибольшим и наименьшим уровнями используются 2 или 3 электрода соответственно. В случае, если резервуар сделан из проводящего материала и выполнены соответствующие электрические соединения, для контроля уровнн можно использовать общий электрод В3. Максимально возможная длина кабеля между реле и электродом составлнет 200м, причем емкостные потери не должны превышать 100 нФ/км. При необходимости контроля различных уровней жидкости в одном резервуаре разрешается использование не более двух комплектов реле и соответствуюших электродов. Допускается непосредственное соединение контактом В1-В3 или В2-В3 без дополнительных электродов. Но в данном случае нельзя задать порог срабатывания.

Выбор электрода

Выбор электрода зависит от свойств контролируемой жидкости. Стандартные типы электродов 072.01 .06 и 072.51 подходят для большинства используемых жидкостей, за исключением коррозионных, для которых требуются электроды , изготовленные по специальному заказу. Конструкция реле типа 72.01 и 72.11 позволяет использование нестандартных электродов.

Ввод в эксплуатацию по месту установки

При установке реле необходимо провести ряд испытаний для выявления соответствия между порогом срабатывания и сопротивлением электродов. Для удобства тестирования предлагается выбрать режим наполнения с наиболее короткой выдержкой времени.

Ввод в действие

Для обеспечения правильной работы необходимо соблюдать требования инструкций по наладке.
72.01

Выберите функцию FS (наполнение и выдержка времени 0,5c) и задайте уставку срабатывания 5 кОм. Убедитесь, что все электроды погружены в жидкость выходное реле находится в стадии готовности. Затем медленно поворачивай те тумблер задания уставки в сторону увеличения сопротивления до 150 кОм до тех пор пока реле уровня не вернется. При этом произойдет отключение внутреннего выходного реле и начнется медленное мигание светодиода.
Если отключение реле не происходит, причины отказа могут быть следующими:

- Электроды не погружены в жидкость
- Жидкость имеет высокое сопротивление
- Расстояние между электродами слишком велико

В завершении выберите требуемую функцию наполнения или дренажа , выставите необходимую выдержку времени и подтвердите выбор заданных параметров.
72.11

Выберите функцию наполнения F ($\mathrm{Z} 1-\mathrm{Z2}$ разомкнут). Убедитесь, что все электроды погружены в жидкость. Общий электрод В3 не присоединнйте выходное реле должно быть в сработанном состоянии. При подключении электрода В3 должен произойти возврат реле контроля уровня. При этом произойдет отключение внутреннего выходного реле и начнется медленное мигание светодиода.
Если отключение реле не происходит, причины отказа могут быть следующими:

- Электроды не погружены в жидкость
- Жидкость имеет высокое сопротивление
- Расстояние между электродами слишком велико

В завершении выберите требуемую функцию наполнения или дренажа, выставите необходимую выдержку времени и подтвердите выбор заданных параметров .

Характеристики

Модульное твердотельное реле 5 А, 1 НО

Ширина модуля 17.5мм

Выход АС (с кремниевым управляемым диодом) Изоляция 5 кВт (1.2/50мкс) между входом и выходом
Версии с переключением при пересечении нуля, и со случайным переключением Высокая скорость переключения
Большой ресурс
Бесшумная работа
Переключение без скачков напряжения и без искр
Низкое управляющее напряжение
Монтаж на рейку 35мм (EN 60715)

77.01

Винтовые клеммь

* См. схему L77-3 стр 3
** См. схемы L77-1 и L77-2 стр 3

Выходная цепь

Номинальная нагрузка AC15 A
Допустимая мощность однофаз.двигателн (230VAC) kW
Ламповая нагрузка 230B: накаливания W
Компактные люминесцентные (CFL) W
Люминесцентные с электронным дросселем W
Люминнеццентные скомпенсированные сэлектронным дросоелемW
Минимальный ток переключения @230B mA
Макс. утечка тока в состоянии «Выкл» @230В mA
Макс. падение напряженинв состоннии «Вкп»» при $25^{\circ} \mathrm{C}$ и 5 A 100 mAV
Входная цепь
Ном.напряжение $\left(U_{N}\right) \quad$ VAC (50/60 Hz)

Номинальная мощность	VA $(50 \mathrm{~Hz}) / \mathrm{W}$
Рабочий диапазон	$\operatorname{VAC}(50 / 60 \mathrm{~Hz})$

Напряжение отключения $\operatorname{VAC}(50 / 60 \mathrm{~Hz}) / \mathrm{DC}$

Технические характеристики

Электрическая долговечность циклов

Время вкл/выкл

Изоляция между входом и выходом (1.2/50мкс) kV
Диапазон температур
Категория защиты
Сертификация (в соответствии с типом)
$+$

77 Серия - Модульное твердотельное реле 5 А

Переключение при пересечении нуля Типовые приложения:

- Снижение пусковых токов ламп (CFL компактные люминесцентные лампы и подобные)
- Включение отопления
- Соленоиды, контакторы
A
1 NO (SPST-NO)

5/300*
60... 240
48... 265

| 800 |
| :---: |$\frac{5}{5}$

| 5 |
| :---: | :---: |
| 5 |
| 1,000 |
| 800 |
| 1,000 |
| 500 |
| 100 |
| 3.5 |
| $0.85 / 1.5$ |

| 5 |
| :---: | :---: |
| 5 |
| 1,000 |
| 800 |
| 1,000 |
| 500 |
| 100 |
| 3.5 |
| $0.85 / 1.5$ |

| 5 |
| :---: | :---: |
| 5 |
| 1,000 |
| 800 |
| 1,000 |
| 500 |
| 100 |
| 3.5 |
| $0.85 / 1.5$ |

500

5	
	5
1,000	
800	
1,000	
500	
100	
3.5	
$0.85 / 1.5$	

3.5
$0.85 / 1.5$

0.85 / 1.5	
24	110... 240
12... 24	-
0.6 / 0.5	3.6 / 0.3
16... 32	90... 265
9.8.. 32	-
2.4	24
$10 \cdot 10^{6}$	
$20 / 12$	
5	
-20...+70 **	
IP20	

W
A
A

По

$5 / 300$ *
$60 \ldots 240$

77.01.x.xxx. 8051

Случайное переключение

Типовые приложения:

- Точное управление электроприводами - Напряжение на входе отличается от напряжения на выходе (AC)
- 3-фазы, общее применение

Упрощенная принципиальная схема

Упрощенная принципиальная схема

$1 \mathrm{NO}($ SPST-NO $)$
$5 / 300{ }^{*}$
$60 \ldots 240$

Информация по заказам

Пример: 77 серия, модульное твердотельное реле, 1 выход 5 А АС, входное напряжение (110...240) V АС, включение при пересечении нуля.

Технические характеристики

Спецификация входной цепи

Входная цепь AC/DC

Светодиодная индикация

Светодиод	Напряж. на входе
	Выкл
	Вкл

Спецификация выходной цепи

L77-1 Зависимость тока выход. цепи от температуры 77.01.0.024.805x @ 32 V DC

L77-2 Зависимость тока выход. цепи от температуры 77.01.8.230.805x @ 265 V AC

I - Модульные твердотельные реле установлены группой (без зазора)
II - Модульные твердотельные реле установлены группой (зазорs 9мм между каждым реле)
III - Модульные твердотельные реле установлены отдельно (без влиянин соседних компонент)

L77-3 Зависимость пикового пускового тока (АС) от времени

[^6]
Схемы подключения

Пример однофазного подключения

Пример трехфазного подключения (3 модуля 77.01.8.230.8051)

Аксессуары

020.03

80 Серия - Модульные таймеры 16 A

Характеристики

Одно- и многофункциональные таймеры 80.01 - Многофункциональный, различные типы питания
80.11 - задержка включения, один тип питания

- ширина 17.5 мм

Шесть шкал времени от 0.1с до 24ч

- Мощная изоляция входа / выхода
- Установка на 35-мм рейку (EN 60715)
" "Шлиц + крест" - возможность применения отверток с плоским шлицом или крестовой головкой для монтажа, электрического подключения, настройки временного диапазона и задания функции
Новая версия с технологией ШИМ
80.01 / 80.11

Винтовые клеммы

80.11

По клАсСИФИкацИИ UL, Мощность в л.с.и НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ.
"ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V
Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток А
Ном.напряжение/Макс.напряжение V AC

Номинальная нагрузка $A C 1$	VA
Номинальная нагрузка $A C 15(230$ V AC) VA	

Допустимая мощность односразного двигателя (230 VAC) kW
Отключающая способность DG1: 30/110/220 VA
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал контактов

Характеристики питания

Ном. напряжение $\left(\mathrm{U}_{\mathrm{N}}\right) \quad$ V AC $(50 / 60 \mathrm{~Hz})$
Номинальная нагрузка AC/DC VA (50 Hz)/W
Рабочий диапазон \quad VAC

Технические параметры

Временные диапазоны

Способность повторения	\%
Время перекрытия	ms
Минимальный управляюший импульс	ms
Погрешность точности всего диапазона уставки $\%$	
Электриескан долгвенность приноминал.нарузке АС1	циклов
Диапазон температур	${ }^{\circ} \mathrm{C}$

Категория защиты
Сертификация (в соответствии с типом)
80.01

Возможность работы при различных напряжениях
Многофункциональные
AI: Задержка включения
DI: Интервалы
SW: Симметричный повтор цикла (начальный импульс ВКЛ)
BE: Задержка отключения с управляющим сигналом
CE: Задержка включения и отключения с управляющим сигналом
DE: Интервалы по управлғющему сигналу при включении

Схема подключения
Схема подключения (с сигналом START)
(6ез сигнала START)
80.11

Один тип питания
Монофункциональный

AI: Задержка включения

Схема подключения (6ез сигнала START)

1 CO (SPDT)
16/30
250/40
4,000
750
0.5

16/0.3/0.1
500 (10/5)
AgCdO
24... 240
24... 240
$<1.8 /<1$
<1.8/<1
10.8... 265
17... 265
10.8... 265
17... 265
(0.1...2)s, (1...20)s, (0.1...2)min, (1...20)min, (0.1...2)h, (1...24)h

± 1	± 1
100	100
50	-
± 5	± 5
$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
$-10 \ldots+50$	$-10 \ldots+50$
IP 20	IP 20

80 Серия - Модульные таймеры 16 A

80 Серия -Твердотельные модульные таймеры 1 A

Характеристики

Многофункциональный твердотельный
выходной таймер с возможностью работы при различном напряжении - ширина 17.5 мм

- Шесть шкал времени от 0.1с до 24ч
- Мощная изоляция входа / выхода
- Установка на 35-мм рейку (EN 60715)
- Выход (24... 240 V AC/DC), независимо от налряжения на входе
. "Шлиц + крест" - возможность применения отверток с плоским шлицом или крестовой головкой для монтажа, электрического подключения, настройки временного диапазона и задания функции
Новая версия с технологией ШИМ
80.71

Винтовые клеммы

Выходная цепь
Конфигурация контактов
$\begin{array}{lr}\text { Номинальный ток } & \text { A } \\ \text { Нам. напряжение }\end{array}$
Диапазон напряжений переключения V AC/DC

Номинальная нагрузка AC15	A
Номинальная нагрузка DC1	A

Минимальный ток переключения	mA
Макс. ток утечки в состоянии ВЫКЛ. mA	

Макс. падение напряжения в состоянии ВКЛ. V

Входная цепь

Ном. напрнжение $\left(\mathrm{U}_{\mathrm{N}}\right)$	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
	V DC
Номинальная нагрузка	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Рабочий диапазон	VAC
	V DC

Технические параметры

Временные диапазоны

Способность повторения	\%
Время перекрытия	ms
Минимальный управляющий импульс	ms
Погрешность точности всего диапазонауставки \%	
Электрическая долговечность	циклов
Диапазон температур	${ }^{\circ} \mathrm{C}$

Категория защиты
Сертификация (в соответствии с типом)
80.71

- Возможность работы при различном напряжении
- Многофункциональный

AI: Задержка включения
DI: Интервалы
SW: Симметричный повтор цикла (начальный импульс ВКЛ)
BE: Задержка отключения с управляющим сигналом
CE: Задержка включения и отключения с управляющим сигналом DE: Интерваль по управляющему сигналу при включении

Схема подключения Схема подключения
(без сигнала START)
(с сигналам START)

1 NO (SPST-NO)	
1	
$24 \ldots 240$	
$19 \ldots 265$	
1	
1	
	0.5
	0.05
2.8	

24... 240
24... 240
1.3/1.3
19... 265
19... 265
(0.1...2)s, (1...20)s, (0.1...2)min, (1...20)min, (0.1...2)h, (1...24)h

± 1
100
50
$100 \cdot 10^{6}$
$-20 \ldots+50$
IP 20
$\mathbf{C E}$

Характеристики

Одно-функциональные таймеры
80.61 - Задержка отключения по питанию, различные типы питания
80.82 - Таймер "звезда-треугольник", различные типы питания

ширина 17.5 мм

Поворотный селектор диапазонов и реостат подстройки времени
Четыре временных шкалы от 0.1с до 20с (тип 80.61)
Шесть временных шкал от 0.1с до 20мин (тип 80.82)
Мощная изоляция входа / выхода
Установка на 35-мм рейку (EN 60715)

По классиФиКации UL, Мощность в л.с.и НОМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V
Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток

Ном.напряжение/Макс.напряжение V AC	
Номинальная нагрузка $A C 1$	VA

Номинальная нагрузка AC15 (230 V AC) VA
Допустимая мощность однофазнюго двигателя (230 V AC) kW
Отключающая способность DC1: 30/110/220 V A
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал ко
Ном. напряжение $\left(U_{N}\right) \quad$ V AC $(50 / 60 \mathrm{~Hz})$
Номинальная нагрузка AC/DC VA (50 Hz)/W
Рабочий диапазон \quad VAC

Технические параметры

Временные диапазоны
Способность повторения $\%$

Время перекрытия
Минимальный управляющий импульс
Погрешность точности всего диапазона уставки \%
Электрмнескандоловееншсть приноминалнаррузе АС1 циклов
Диапазон температур ${ }^{\circ} \mathrm{C}$

Категория защиты
Сертификация (в соответствии с типом)

s
80.61

Возможность роботы при различных напряжениях
Монофункциональный

80.82

Различные типы питания Монофункциональный
Время срабатывания регулируется (0.05...1)s

SD: Звезда-Треугольник

Схема подключения (без сигнала START)
(без сигнала START)
2 NO (DPST-NO)

1 CO (SPDT)	2 N
$8 / 15$	

6/10
250/400
2,000

, 000	1,500
400	300

\square
\square
8
6/0.2/0

$300(5 / 5)$	
AgNi	
$24 \ldots 240$	

500 (12
<0

$24 \ldots . . .240$	$24 \ldots 240$
$0.6 /<0.6$	$<1.3 /<0.8$

$17 \ldots 265$
$17 \ldots 265$
$(0.1 \ldots 1) \mathrm{s},(0.5 \ldots 5) \mathrm{s},(1 \ldots 10) \mathrm{s},(2 \ldots 20) \mathrm{s}$
(0.1...2)s, (1...20)s, (0.1...2)min, (1...20)min ± 1

$100 \cdot 10^{3}$	
	$-10 \ldots+50$
	$I P 20$

Информация по заказам

Пример: Модульные таймеры 80 серии, 1 перекидной контакт (SPDT), 16 A, питание (12...240)V AC/DC.

Технические параметры

Изоляция				
Электрическая прочность		80.01/11/21/41/82/91	80.61	80.71
	между входной и выходной цепями V AC	4,000	2,500	2,500
	между открытыми контактами VAC	1,000	1,000	-
Изоляция (1.2/50 $\mu \mathrm{s}$) между входом и выходом kV		6	4	4
Спецификация EMC				
Тип проверки		Ссылка на стандарт		
Электростатический разряд	контактный разряд	EN 61000-4-2	4 kV	
	воздушный разряд	EN 61000-4-2	8 kV	
Электромагнитное поле РЧ-диапазона ($80 \div 1000 \mathrm{MHz}$)		EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$	
Быстрый переходный режим (разрыв) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) на клеммах питания		EN 61000-4-4	4 kV	
Импульсы (1.2/50 $\mu \mathrm{s}$) на клеммах питания	общий режим	EN 61000-4-5	4 kV	
	дифференциальный режим	EN 61000-4-5	4 kV	
на клемме луска (B1)	общий режим	EN 61000-4-5	4 kV	
	дифференциальный режим	EN 61000-4-5	4 kV	
Общий режим для РЧ-диапазона (0.15 $\div 80 \mathrm{MHz}$) на клеммах питания		EN 61000-4-6	10 V	
Радиационное и кондуктивное излучение		EN 55022	класс В	
Прочее				
Ток абсорбции управляющего сигнала (В1)		$<1 \mathrm{~mA}$		
Потери мощности	без нагрузки W при номинальном токе W	1.4		
		3.2		
(9ㅏ) Момент завинчивания Nm		0.8		
Макс. размер проводо	MM ${ }^{2}$	одножильный кабель	многожильный кабель	
		1x6/2x4	1x4 / 2x2.5	
	AWG	$1 \times 10 / 2 \times 12$	1x12 / 2x14	

Аксессуары

$$
\begin{array}{|c|l}
\text { Блок маркировок, для типов } 80.61 / 82 \text {, пластик, } 24 \text { знака, } 9 \times 17 \text { мм } 020.24
\end{array}
$$

Блок маркировок, для типов 80.01/11/21/41/71, пластик, 72 знака, 6×12 мм

Функции

$\mathbf{U}=$ Напряжение питания	СВЕТОДИОД *	Напряжение питания	$\begin{gathered} \text { Выходной } \\ \text { контакт НО } \end{gathered}$	Контакты	
				Открыт	Закрыт
$\mathbf{S}=$ Управляющий сигнал		Выкл	Открыт	15-18	15-16
$\begin{gathered} -=\text { Выходной } \\ \text { контакт } \end{gathered}$	$\square \square \square \square$	Вкл	Открыт	15-18	15-16
		Вкл	Открыт (отсчет времени)	15-18	15-16
		Вкл	Зокрыт	15-16	15-18

* Светодиод на таймере типа 80.61 загорается только при подаче на таймер питания; во время работы таймера светодиод не горит

Старт по питанию = Старт по замыканию контактов питания (А1).

Схемы подключения Утартанию = Старт по замыканию контактов питания (A1). Управляющий сигнал = Старт по замыканию контактов управления (B1).			
Без сигнала START 80.01	Тип 80.01 80.71		(Al) Задержка включения. Питание подается на таймер. Контакт замыкается по прошествии предустановленного времени. Сброс происходит при выключении питания. (DI) Интервалы. Питание подается на таймер. Контакт замыкается немедленно. По прошествии предустановленного времени контакт возвращается в исходное положение. (SW) Симметричный повтор цикла (начал.импульс ВКЛ). Питание подается на таймер. Выходные контакты срабатывают немедленно и переключаются между положениями вкл. и выкл. до тех пор, пока подается питание. Соотношение $1: 1$ (время во вкл. состоянии = времени в выкл. состоянии).
с сигналам START	$\begin{aligned} & 80.01 \\ & 80.71 \end{aligned}$		(ВЕ) Задержка отключения с управляющим сигналом. Электропитание постоянно подается на таймер. Выходные контакты замыкаются при подаче управляющего сигнала (S). При размыкании контактов управляющего сигнала, контакты выходного сигнала размыкаются с заданной задержкой по времени. (CE) Задержка включения и отключения с управляющим сигналом Электропитание постоянно подается на таймер. Контакты управляющего сигнала (S) инициирует замыкание выходных контактов с заданной задержкой по времени. Размыкание управляющих контактов инициирует размыкание выходных контактов с той же задержкой по времени. (DE) Интервалы по управляющему сигналу при включении. Электропитание постоянно подается на таймер. При кратковременном или постоянном замыкании контактов управляющего сигнала (S), выходные контакты незамедлительно замыкаются на предустановленный интервал времени.

ПРИМЕЧАНИЕ: Функцию следует задавать до подачи питания на таймер.

- Возможность управления внешней нагрузкой, например катушкой другого реле или таймера, соединенной с сигнальной кпеммой START (B1).
* При питании постоянным током положительный полюс следует подключать к клемме B1 (согласно EN 60204-1).
** Напряжение, отличное от напряжения питания, можно применить для команды START (B1), например:
$\mathrm{A} 1-\mathrm{A} 2=230 \mathrm{~V}$ AC
$\mathrm{B} 1-\mathrm{A} 2=12 \mathrm{~V}$ DC

Функции

Схемы подключения

* При питании постоянным током положительный полюс следует подключать к клемме B1 (согласно EN 60204-1).
- Возможность управления внешней нагрузкой, например катушкой другого реле или таймера, соединенной с сигнальной кпеммой START (B1).
** Напряжение, отличное от напряжения питания, можно применить для команды START (B1), например: $\mathrm{A} 1-\mathrm{A} 2=230 \mathrm{~V} \mathrm{AC}$
$\mathrm{B} 1-\mathrm{A} 2=12 \mathrm{~V} D C$

Характеристики

Многофункциональные таймеры,

 различные типы питания- Ширина модуля 17.5 мм

Семь функций (4-старт по питанию,
3 - старт по сигналу)
Дополнительно функция Сброс

- Шесть диапазонов времени от 0,1с до 10ч
- Монтаж на рейку 35мм (EN 60715)

81.01

Винтовой зажим

DI: Интервалы
SW: Симметричный повтор цикла (начальный импульс ВКЛ) SP: Симметричный повтор цикла (начальный импульс ВЫКЛ) BE: Задержка отключения с управляюшим сигналом DE: Интервалы по управляющему сигналу при включении EEb: Интервалы по управляющему сигналу при отключении

Схема подключения (старт по питанию)

Схема подключения (старт по сигналу)

Характеристики контактов	
Конфигурация контактов	1 CO (SPDT)
Номинальный ток/Макс.пиковый ток A	16/30
Ном.напряжение/Макс.напрнжение переключения VAC	250/400
Номинальнан нагрузка AC1 VA	4,000
Номинальная нагрузка AC15 (230 V AC) VA	750
Допустимая мощность однофаз.двигателя (230 VAC) kW	0.55
Отключающая способность DC1: 30/110/220 VA	16/0.3/0.12
Минимальная нагрузка на переключение mW (V/mA)	500 (10/5)
Стандартный материал контактов	AgCdO
Характеристики питания	
Ном.напряжение (U_{N}) V AC $(50 / 60 \mathrm{~Hz})$	12.. 230
V DC	12... 230 (не поляризованное)
Номинальная мощность AC/DC VA (50 Hz)/W	<2 / < 2
Рабочий диапазон VAC	10.8... 250
V DC	10.8... 250
Технические характеристики	
Заданный диапазон времени	(0.1...1)s, (1...10)s, (10...60)s, (1...10)min, (10...60)min, (1...10)h
Повторнемость \%	± 1
Время восстановления ms	≤ 50
Минимальный управляющий импульс ms	50
Погрешность установки во всем диапазоне \%	± 5
Электрическап долговечность при ном.напрузке циклов	$100 \cdot 10^{3}$
Диапазон температур ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$
Категория защиты	IP 20
Сертификация (в соответствии с типом)	CE

81 Серия - Модульные таймеры 16 A

Информация по заказам

Пример: Модульные таймеры многофункциональный 81 серии, 1 перекидной контакт (SPDT) - 16 A, питание (12...230)V AC/DC.

Контакты

1 = 1 переключающий (CO-SPDT)

Технические характеристики

Устойчивость к перепадам		
Тип теста	Согл. нормам	
Электростатический разряд	EN 61000-4-2	4 kV
	EN 61000-4-2	8 kV
Электромагнитное поле РЧ-диапазона ($80 \div 1,000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
Быстрый переходный режим (разрыв 5-50 нс, 5 кГц) на клеммах питания	EN 61000-4-4	4 kV
Импульсы напряжения (1.2/50 мкс) общий режим	EN 61000-4-5	4 kV
на клеммах питания дифференц.режим	EN 61000-4-5	4 kV
Общий режим длн РЧ-диапазона (0.15 $\div 80 \mathrm{MHz}$) на клеммах питания	EN 61000-4-6	10 V
Радиационное и кондуктивное излучение	EN 55022	класс A
Прочие данные		
Ток абсорбции управляющего сигнала (B1)	$<1 \mathrm{~mA}(\mathrm{~S}-\mathrm{X})$	$<1 \mathrm{~mA}(\mathrm{R}-\mathrm{X})$
Напряжение на входных клеммах R - X и S -X	Без гальваническое развязки с напряжением питания A1-A2	
Потеря мощности	1.3	
	3.2	
(7) М Момент завинчивания Nm	0.8	
Макс. Размер провода	одножильный провод	многожильный провод
	1x6/2x4	1x4/2x2.5
	1x10 / 2x12	1×12/2x14

Задание	(0.1...1)s		(1...10)s		10...60)s		...10)min		10...60)min		(1...10)h
диапазона	1	1		1		1				1	
времени	2	2		2		2		2		2	
	3	3		3		3		3		3	
	4	4		4		4		4		4	
	5	5		5		5		5		5	
	6	6		6		6		6		6	

[^7]
Функции

Старт по питанию = Старт по замыканию контактов питания (А1).
Управляющий сигнал = Старт по замыканию контактов управления (B1).

Схемы подключения

** Подключение Сброс ($\mathrm{R}-\mathrm{X}$) опционально

* Клеммы R, S \& X не следует подключать напрямую к питанию таймера, но подключении должно быть рассчитано на напряжение питания.
** Подключение Сброс ($\mathrm{R}-\mathrm{X}$) опционально

предустановленный интервал времени.

(EEb) Интервалы по управляющему сигналу при

 отключении.Электропитание постоянно подается на таймер. При размыкании контактов управляющего сигнала (S), выходные контакты незамедлительно замыкаются на предустановленный интервал времени.

(AI) Задержка включения.

Питание подается на таймер. Контакт замыкается по прошествии предустановленного времени. Сброс происходит при выключении питания.

(DI) Интервалы.

Питание подаетсн на таймер. Контакт замыкается немедленно. По прошествии предустановленного времени контакт возвращается в исходное положение.
(SW) Симметричный повтор цикпа (начал.импульс ВКЛ). Питание подается на таймер. Выходные контакты срабатывают немедленно и переключаются между положениями вкл. и выкл. до тех пор, пока подается питание. Соотношение $1: 1$ (время во вкл. состоянии = времени в выкл. состоянии).
(SP) Симметричный повтор цикла (начал.импульс ВЫКЛ). Питание подается на таймер. Выходные контакты срабатывают по истечении заданного времени и переключаются между положениями вкл. и выкл. до тех пор, пока подается питание. Соотношение 1: 1 (время во вкл. состоянии $=$ времени в выкл. состоянии).
(ВЕ) Задержка отключения с управляющим сигналом.
Электропитание постоянно подается на таймер.
Выходные контакты замыкаются при подаче управляющего сигнала (S). При размыкании контактов управляющего сигнала, контакты выходного сигнала размыкаются с заданной задержкой по времени.
(DE) Интервалы по управляющему сигналу при включении.
Электропитание постоянно подается на таймер. При кратковременном или постоянном замыкании контактов управляющего сигнала (S), выходные контакты незамедлительно замыкаются на

предустовленнй интервал времени.

Функция СБРОС (R)

Для каждой функции и для каждого временного диапазона, таймер немедленно обнуляется при замыкании контактов Сброс.

Пример:
Функция задержки включения (без управл.сигнала). Замыкание внешней кнопки Сброс незамедлительно сбрасывает таймер. Размыкание кнопки Сброс вновь инициирует функции таймера.

81 Серия - Модульные таймеры 16 A

Аксессуары

Маркировка для типа 81.01, пластик, 1знак, 17×25.5 мм
019.01
019.01

Блок маркировок для типа 81.01, пластик, 72 знака, 6×12 мм
060.72

(1) finder

Характеристики

многофункциональные таймеры 83.01 - многофункциональные и различные типы питания, 1 контакт 83.02 - Многофункциональные и различные типы питания, 2 контакта (с отсчетом времени + мгновенного действия), опция внешний потенциометр для задания времени

- Ширина 22.5 mm
- Восемь временных шкалы от
0.05с до 10 дней

Мощная изоляция входа/выхода

- Различные типы питания (24...240) V AC/DC - Монтаж на рейку 35мм (EN 60715) "Шлиц + крест" - возможность применения отверток с плоским шлицом или крестовой головкой для монтажа, электрического подключения, настройки временного диапазона и задания функции Новая версия с технологией ШИМ

См. чертеж на стр. 5
Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток A
Ном.напряжение/Макс.напряжение V AC
Номинальная нагрузка AC1 VA

Номинальная нагрузка AC15 (230 V AC) VA
Дотустимая мощность односразного двигателя (230 V AC) kW
Отключающая способность DC1:30/110/220 VA
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал контактов
Характеристики питания
Ном. напряжение (U_{N}) V VC ($50 / 60 \mathrm{~Hz}$)
Номинальная нагрузка AC/DC VA (50 Hz)/W
Рабочий диапазон \quad VAC

Технические параметры

Временные диапазоны

Способность повторения	\%
Время перекрытин	ms
Минимальный управляюший импульс	ms
Погрешность точности всего диапазона уставки $\%$	
Эпектринскан долговенность приноминал.нарузке АС1 цикпов	
Диапазон температур	${ }^{\circ} \mathrm{C}$

Категория защиты
Сертификация (в соответствии с типом)

83 Серия - Модульные таймеры 10-16 А
83.01

Различные типы питания
Многофункциональные

AI: Задержка включения
DI: Интервалы
GI: Импульсы с задержкой
SW :Симметричный повтор цикла (начальный импульс ВКЛ)
BE: Задержка отключения с управляющим сигналом
CE: Задержка включения и отключения с управляющим сигналом
DE: Интервалы по управляющему сигналу при включении
WD: Сторожевая функция (Повторное включение с интервалами по управляющему сигналу)

Схема подключения
(без сигнала START)

Схема подключения (с сигналом START)

различные типы питания
Многофункциональные
Время можно задавать внешним потен циометром
2 контакта с отсчетом времени или
1 с отсчетом +1 мгновенного действия
AI: Задержка включения
DI: Интервалы
GI: Импульсы с задержкой
SW: Симметричный повтор цикла (начальный импульс ВКЛ)
BE: Задержка отключения с управлающим сигналом
CE: Задержка включения и отключения с управляющим сигналом
DE: Интервалы по управлающему сигналу при включении
WD: Сторожевая функция (Повторное включение с интервалами по управляющему сигналу)

Схема подключения (6ез сигнала START)

$1 \mathrm{CO}($ SPDT)
$16 / 30$
$250 / 400$
4,000
750
0.5
$16 / 0.3 / 0.12$
$300(5 / 5)$
AgNi
$24 \ldots 240$
$24 \ldots 240$
$1.5 /<2$
$16.8 \ldots 265$
$16.8 \ldots 265$

2 CO (DPDT)
$10 / 30$
$250 / 400$
2,500
750
0.5
$10 / 0.3 / 0.12$
$300(5 / 5)$
AgNi
$24 \ldots 240$
$24 \ldots 240$
$<2 /<2$
$16.8 \ldots 265$
$16.8 \ldots 265$

$(0.05 \ldots 1) \mathrm{s},(0.5 \ldots 10) \mathrm{s},(0.05 \ldots 1) \mathrm{min},(0.5 \ldots 10) \mathrm{min},(0.05 \ldots 1) \mathrm{h},(0.5 \ldots 10) \mathrm{h},(0.05 \ldots 1) \mathrm{d},(0.5 \ldots 10) \mathrm{d}$

± 1	± 1
200	200
50	50
± 5	± 5
$70 \cdot 10^{3}$	$150 \cdot 10^{3}$
$-20 \ldots+60$	\mathbf{C}
IP 20	$-20 \ldots+60$
	IP 20

Характеристики

Однофункциональные таймеры

83.11 - Задержка включения, различные типы питания
83.21 - Интервалы, различные типы питания
83.41 - Задержка отключения с управляющим сигналом, различные типы питания
1 контакт
Ширина 22.5 mm
Восемь временных шкалы от 0.05 с до 10 дней

Мощная изоляция входа/выхода
Различные типы питания (24...240) V AC/DC
Монтаж на рейку 35мм (EN 60715)
"Шлиц + крест" - возможность применения отверток с плоским шлицом или крестовой головкой для монтажа, электрического подключения, настройки временного диапазона и задания функции Новая версия с технологией ШИМ

См. чертеж на стр. 5
Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток
Ном.напряжение/Макс.напряжение
Номинальная нагрузка AC1 VA
Номинальная нагрузка AC15 (230 V AC) VA
Допустимая мощность однофразного двигателя (230 VAC) kW
Отключающая способность DC1: 30/110/220 VA
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал ко
Ном. напряжение $\left(U_{N}\right) \quad V$ AC $(50 / 60 \mathrm{~Hz})$
Номинальная нагрузка AC/DC VA (50 Hz)/W
Рабочий диапазон \quad VAC
Технические параметры
Временные диапазоны

Способность повторения	\%
Время перекрытия	ms
Минимальный управляющий импульс	ms
Погрешность точности всего диапазона уставки \%	
Электрмескандолгвеность при номинал.нарузке АСТ циклов	
Диапазон температур	C
Категория защиты	
Сертификация (в соответствии с типом)	

83 Серия - Модульные таймеры 8-16 А

Характеристики
Одно- И многофункциональные таймеры 83.62 - Задержка отключения по питанию, Различные типы питания, 2 контакта
83.82 - Звезда-Треугольник, Различные типы питания, Выходные контакты звезда-треугольник
83.91 - Асимметричный повтор цикла, Различные типы питания, 1 контакт

- Ширина 22.5 mm

Шкалы времени:
тип 83.62-0.05с до 3 минут
тип 83.82 / 83.91-0.05с до 10 дней
Различные типы питания (24...240) V AC / DC
Монтаж на рейку 35мм (EN 60715)

* (0.05...2)s, (1...16)s, (8...70)s, (50...180)s ** $\quad(0.05 \ldots 1) \mathrm{s},(0.5 \ldots 10) \mathrm{s},(0.05 \ldots 1) \mathrm{min}$, (0.5...10)min, (0.05...1)h, (0.5...10)h, (0.05...1)d, (0.5...10)d
${ }^{* * *} 0.05 \mathrm{~s}, 0.2 \mathrm{~s}, 0.3 \mathrm{~s}, 0.45 \mathrm{~s}, 0.6 \mathrm{~s}, 0.75 \mathrm{~s}$, $0.85 \mathrm{~s}, 1 \mathrm{~s}$

См. чертеж на стр. 5
Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток A
Ном.напряжение/Макс.напряжение V AC
Номинальная нагрузка AC1 VA
Номинальная нагрузка AC15 (230 V AC) VA
Допустимая мощность однофразного двигателя (230 VAC) kW
Отключающая способность DG1: 30/110/220 VA
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал контактов

Характеристики питания

Ном. напрнжение (U_{N}) V AC ($50 / 60 \mathrm{~Hz}$)

	V DC
Номинальная нагрузка AC/DC VA (50 Hz)/W	
Рабочий диапазон	V AC

Технические параметры

Временные диапазоны
Способность повторения $\%$
Время перекрытин
Минимальный управляющий импульс

Погрешность точности всего диапазона уставки \%
Электринескан долговенность при номинал.нагузке AC1 циклов
Диапазон температур ${ }^{\circ} \mathrm{C}$
Категория защиты

Сертификация (в соответствии с типом)
83.82

Различные типы питания Однофункциональные 2 контакта Время переключения можно регулировать (0.05...1)s ***

SD: Звезда-Треугольник

Схема подключения (6ез сигнала START)
$-$
83.62

Различные типы питания Однофункциональные 2 контакта

BI: Задержка отключения по питанию (питание ВЫКЛ)

2 CO (DPDT)
\square

Информация по заказам

Пример: Модульные таймеры 83 серии, 1 перекидной контакт (SPDT), 16 A, питание (24...240)V AC/DC.

Технические параметры

Изоляция			
Электрическан прочность	между входной и выходной цепями V AC	4,000	
	между открытыми контактами	1,000	
Изоляция (1.2/50 $\mu \mathrm{s}$) между входом и выходом kV		6	
Спецификация ЕМС			
Тип проверки		Ccblлка на стандарт	
Электростатический разряд	контактный разряд	EN 61000-4-2	4 kV
	воздушный разряд	EN 61000-4-2	8 kV
Электромагнитное поле РЧ-диапазона	($80 \div 1,000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
	(1,000 $\div 2,700 \mathrm{MHz}$)	EN 61000-4-3	$3 \mathrm{~V} / \mathrm{m}$
Быстрый переходный режим (разрыв) (5-50 не, 5 и 100 kHz)	на клеммах питания	EN 61000-4-4	6 kV
	на клемме пуска (B1)	EN 61000-4-4	6 kV
Импульсы (1.2/50 $\mu \mathrm{s}$) на кпеммах питания	общий режим	EN 61000-4-5	6 kV
	дифференциапьный режим	EN 61000-4-5	4 kV
на клемме пуска (B1)	общий режим	EN 61000-4-5	6 kV
	дифференциапьный режим	EN 61000-4-5	4 kV
Общий режим для РЧ-диапазона	$(0.15 \div 80 \mathrm{MHz}$)	EN 61000-4-6	10 V
на клеммах питания	$(80 \div 230 \mathrm{MHz})$	EN 61000-4-6	10 V
Радиационное и кондуктивное излучение		EN 55022	класс В
Прочее			
Ток абсорбции управляющего сигнала (B1)		$<1 \mathrm{~mA}$	
- Макс. длина кабеля (емкостное сопротивление $\leq 10 \mathrm{nF} / 100 \mathrm{~m}$)		150 m	
- в случае если управляющий сигнал В1, отличается от напряжения питания A1/A2		Контакт В1 изолирован от А1 и А2 с помощью опторазвязки, следовательно может работать с напряжением отличным от напрнжения питания. В случае применения управляющего сигнала в диапазоне (24... 48) V DC и напряжения питания (24...240)V AC, убедитесь, что сигнал подключен к клеммам A2, и + соответствует B1, и что фаза L соответствует B1 и N подключен к А2.	
Внешний потенциометр для 83.02		Применение линейного потенциометра $10 \mathrm{k} \Omega / \geq 0,25 \mathrm{~W}$. Максимальная длина кабеля 10 m . При использовании внешнего потенциометра, таймер автоматически переключается на установочные значение с внешнего потенциометра. Принимайте во внимание, что потенциал на потенциометре соответствует напряжению питания таймера.	
Потери мощности	без нагрузки W	1.4	
	при номинальном токе W	3.2	
(44) Момент завинчивания	Nm	0.8	
Макс. размер проводо	mm^{2}	одножильный кабель	многожильный кабель
		1x6 / 2x4	1x4 / 2x2.5
	AWG	1x10 / 2x12	1x12 / 2x14

Чертежи

83.01

Винтовой зажим

83.11

Винтовой зажим

83.41

Винтовой зажим

83.82

Винтовой зажим

83.02

Винтовой зажим

83.21

Винтовой зажим

83.62

Винтовой зажим

83.91

Винтовой зажим

Аксессуары

Блок маркировок, для типов 83.01/11/21/41/62/82, пластик, 72 знака, $6 \times 12 \mathrm{~mm}$

Потенциометр, применяемый как внешний потенциометр для типа 83.02
 $10 \mathrm{k} \Omega / 0.25 \mathrm{~W}$ линейный

Функции

СВЕТОДИОД*	Напряжение питания	Выходной контакт НО	Контакты	
			Открыт	Закрыт
	Выкл	Открыт	$\begin{aligned} & 15-18 \\ & 25-28 \end{aligned}$	$\begin{aligned} & 15-16 \\ & 25-26 \end{aligned}$
\square	Вкл	Открыт	$\begin{aligned} & 15-18 \\ & 25-28 \end{aligned}$	$\begin{aligned} & 15-16 \\ & 25-26 \end{aligned}$
	Вкл	Открыт (отсчет времени)	$\begin{aligned} & 15-18 \\ & 25-28 \end{aligned}$	$\begin{aligned} & 15-16 \\ & 25-26 \end{aligned}$
	Вкл	Зокрыт	$\begin{aligned} & 15-16 \\ & 25-26 \end{aligned}$	$\begin{aligned} & 15-18 \\ & 25-28 \end{aligned}$

* Светодиод на реле 83.62 включен когда подается напряжение питания на таймер.

- Возможность управления внешней нагрузкой, например катушкой другого реле или таймера, соединенной с сигнальной кпеммой START (B1).
* При питании постоянным током положительный полюс следует подключать к клемме B1 (согласно EN 60204-1).
** Напряжение, отличное от напряжения питания, можно применить для команды START (B1), например: A1-A2 = 230 V AC
$B 1-A 2=12 V D C$

Функции

Cхемы подклюючения

Тип 83.02.

Функции с управляющим сигналом (например: BE)

Оба выходных контакта (15-18 и 25-28) управляются с задержкой

\cup	,	L
	?]	

Оба выходных контакта [15-18 и 25(21)-28(24)]
Остаются постоянно разомкнуты

Выходной контакт $15-18$ управляетсн с задержкой Выходной контакт 21-24 следует за управляющим сигналом (S)

Выходной контакт 15-18 управляется с задержкой Выходной контакт 21-24 следует напряжению питания

Функции

Схемы подключения
U = Напряжение питания
$\mathrm{S}=$ Управляющий сигнал
—
= Выходной контакт

Монофункциональный
Без сигнала START

 с сигналам START

Асимметричный

 повторительБез сигнала START

$\begin{array}{lllll}\text { Z1 } & \text { Z2 } & 15 & 16 & 18\end{array}$

Z1-Z2 разомкнут:
функция (LI)
Z1-Z2 замкнут:
функция (PI)
с сигналам START

83.41

(ВЕ) Задержка отключения с управляющим сигналом. Электропитание постоянно подается на таймер. Выходные контакты замыкаются при подаче управляющего сигнала (S). При размыкании контактов управляющего сигнала, контакты выходного сигнала
размыкаются с заданной задержкой по времени.

(AI) Задержка включенин.

Питание подается на таймер. Контакт замыкается по прошествии предустановленного времени.
Сброс происходит при выключении питания.

(DI) Интервалы.

Питание подается на таймер. Контакт замыкается немедленно. По прошествии предустановленного времени контакт возвращается в исходное положение.
(ВІ) Задержка отключения по питанию (питание ВЫКЛ). Питание подается на таймер (не менее 500 мс). Контакт замыкается немедленно. Прекращение подачи питания инициирует предустановленную задержку, после которой выходные контакты возвращаются в исходное состояние.
(SD) Звезда-Треугольник.
При подаче питания на таймер, контакт (λ) немедленно замыкается. После того как задержка зодана, контакт (人) размыкается. После последующих временных уставак в диапазоне (0.05 ... 1)с контакт " \triangle " замыкается и остается в зтом положении до снятия питания с реле.

83.91

(니) Асимметричный повтор цикла

(начальный импульс ВКЛ) - (Z1-Z2 разомкнут).
Питание подается на таймер постоянно.
Выходные контакты срабатывают немедленно при закрытии переключотеля сигналов (5) Открытие переключотеля сигналов инициирует предустановленную задержку, после которой выходные контакты возвращаются в исходное состояние.
(PI) Асимметричный повтор цикла
(начальный импульс ВЫКЛ) - (Z1-Z2 замкнут).
Подать питание на таймер. Выходные контакты переключатся по истечении времени Т1, и будет повторяться цикл между ВЫКЛ и ВКЛ до тех пор, пока подается питание. Задержки состояний ВКЛ и ВЫКЛ задаются индивидуально.
(LE) Асимметричный повтор цикла по управляющему сигналу (начальный импульс ВКЛ) - (Z1-Z2 разомкнут). Питание подается на таймер. Выходные контакты срабатывают немедленно и переключаются между положениями ВКЛ и ВЫКЛ до тех пор, пока подается питание. Время пребывания в замкнутом (T 1) и разомкнутом (T 2) состоянии настраивается независимо.
(РЕ) Асимметричный повтор цикла по управляющему сигналу (начальный импульс ВЫКЛ) - (Z1-Z2 замкнут). Питание постоянно подается на таймер.
Замыкание управляющего сигнала (S) инициирует задержку времени $T 1$, по истечении которой выходные контакты переключаются. Цикл ВЫКЛ и ВКЛ будет повторяться цикл до тех пор, пока клеммы управляющего сигнала разомкнуты.

(1) finder

85 Серия - Миниатюрные таймеры 7-10 A

Характеристики

Съемный таймер
85.02-2 группы контактов 10 A
85.03-3 группы контактов 10 A
85.04-4 группы контактов 7 А

Многофункциональные
Семь временных шкал от 0,05 с до 100 ч
Розетки 94 серии

ПО КлАсСИФИкациИ UL, Мощность в л.с.и НоМИНАЛ КОНТАКТОВ В ДЕЖУРНОМ РЕЖИМЕ, СМ. "ОсНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ", СТР V

Технические параметры

Временные диапазоны

Способность повторения	\%
Время перекрытия	ms
Минимальный управляющий импульс	ms
Погрешность точности всего диапазона уставки $\%$	
Электриескағ доптовенность поиномналннарукке АС1 циклов	
Диапазон температур	${ }^{\circ} \mathrm{C}$

Категория защиты
Сертификация (в соответствии с типом)

Сертификация (в соответствии с типом)

85 Серия - Миниатюрные таймеры 7-10 A

Информация по заказам

Пример: Таймер 85 серии, 4 перекидных контакта (4РОТ), питание $24 \mathrm{VAC/DC}$, функции AI, DI, GI, SW.

$2=2$ контакта - 10 А
$3=3$ контакта - 10 А
$4=4$ контакта - 7 A

Технические параметры

Временные диапазоны

ПРИМЕЧАНИЕ: временные диапазоны и функции необходимо задавать до подачи питания на таймер.

Функции

$\begin{gathered} \mathbf{U}=\text { Напряжение } \\ \text { питания } \\ \mathbf{-}=\begin{array}{c} \text { Выходной } \\ \text { контакт } \end{array} \end{gathered}$	СВЕТОДИОД	Напряжение питания	Выходной контакт HO	Контакты	
				Открыт	Закрыт
		Выкл	Открыт	x1-x4	x1-x2
	\square - \square^{\square}	Вкл	Открыт	x1-x4	x1-x2
		Вкл	Открыт (отсчет времени)	x1-x4	x1-x2
		Вкл	Закрыт	$\mathrm{x} 1-\mathrm{x} 2$	$\mathrm{x} 1-\mathrm{x} 4$

Схемы подключения Тип: 85.02, 85.03, 85.04

94 Серия -Розетки и аксессуары для таймеров 85 Серии

94 Серия -Розетки и аксессуары для таймеров 85 Серии

	Розетка с винтовым зажимом для установки на поверхность или на 35мм рейку		$94.92 .3$ синий	$94.92 .30$ черный	94.94.3 синий	94.94.30 черный
	Тип таймера		85.02		85.02, 85.04	
	Аксессуары					
	Металлическая клипса		094.81			
Сертификация (В соответствии с типом):	6-полюсная перемычка		094.06	094.06.0	094.06	094.06.0
	Маркировочнан этикетка		094.80.2			
C P crimus	Технические параметры					
	Номинальные значения		$10 \mathrm{~A}-250 \mathrm{~V}$			
	Электрическая прочность		2 kV AC			
	Категория защиты		IP 20			
	Температура окружающего воздуха	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$			
	(4ํ) Момент завинчивания	Hm	0.5			
	Длина зачистки провода	мM	8			
	Макс. размер провода дпя розеток		одножильный провод		многожильный провод	
	94.92.3 и 94.94.3	MM ${ }^{2}$	1x6 / 2x2.5		1x4 / 2x2.5	
		AWG	1x10/2x14		1x12 / 2x14	

86 Серия - Модульные Таймеры

Характеристики

Модульные таймеры для использования с реле и розетками
86.00 - Многофункц. модульный таймер, работа при различн. напряжении 86.30 -2-функц. модульный таймер, робота при различн. напряжении
Модульный таймер тип 86.00 испопьзуется с розетками серий $90,92,96$, таймер тип 86.30 с сериями $90,92,94,95,96,97$

Широкий диапазон напряжений питания: 12... 240 V AC/DC (86.00)
12... $24 \mathrm{~V} \mathrm{AC/DC} \mathrm{или} \mathrm{230..}$.240 V AC (86.30)

Светодиодная индикация

Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток A
Ном.напряжение/Макс.напряжение V AC
Номинальная нагрузка $\mathrm{AC} 1 \quad \mathrm{VA}$
Номинальная нагрузка AC15 (230 V AC) VA
Допустимая мощность однофазного двигателя (230 VAC) kW
Отключающан способность DG1: $30 / 110 / 220 \mathrm{VA}$
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал контактов
Характеристики питания
Ном. напряжение $\left(\mathrm{U}_{\mathrm{N}}\right) \quad$ V AC $(50 / 60 \mathrm{~Hz})$
V DC

| Номинальная нагрузка AC/DC | W |
| :--- | ---: | ---: |
| Рабочий диапазон | VAC $(50 / 60 \mathrm{~Hz})$ |

Технические параметры

Временные диапазоны

Способность повторения	\%
Время перекрытия	ms
Минимальный управляюший импульс	ms
Погрешность точности всего диапазона уставки \%	
Электринеская долговечностьприноминал.нарузке АС1 циклов	
Диапазон температур	${ }^{\circ} \mathrm{C}$

Категория защиты
Сертификация (в соответствии с типом)
86.00

- Шкала времени: от 0.05с до 100ч - Многофункциональный
- Установка с испопьзованием розеток $90.02,90.03,92.03$ и 96.04

AI: Задержка включения

DI: Интерваль
SW: Симметричный повтор цикла (начальный импульс ВКЛ)
BE: Задержка отключения с управляющим сигналом
CE: Задержка включения и отключения с управляющим сигналом
DE: Интервалы по управляющему сигналу при включении
EE: Интервалы по управляющему сигналу при отключении
FE: Интервалы по управляющему сигналу при включении + при отключении

Схема подключения
Схема подключения (с сигналом START)
(6ез сигнала START)
86.30

Шкала времени: от 0.05 с до 100ч - 2-функциональный

- Установка с использованием розеток 90.02 , 90.03, 92.03, 94.02, 94.03, 94.04, 95.03, 95.05, $95.55,96.02,96.04,97.01,97.02,97.51$ и 97.52

AI: Задержка включения
DI: Интервалы

См. реле серии 56, 60 и 62 Не использовать с реле 62.3x.x012.x300 и 62.3x.x012.x600

$$
62.3 x . x 012 . x 300 \text { и 62.3x.x012.x600 }
$$

Схема подключения

См. реле серии
$40,44,46,55,56,60$ и 62

Информация по заказам

Пример: 86-ая серия, многофункциональный модульный таймер, напряжение питания (12...240)V AC/DC.

Совместимость	количество групп контактов	Тип реле	Тип розетки	Модульный таймер
	1	40.31	95.03	86.30
	1	40.61	95.05	86.30
	1	46.61	97.01/97.51	86.30
	2	40.52/44.52/44.62	95.05/95.55	86.30
	2	46.52	97.02/97.52	86.30
	2	55.32	94.02	86.30
	2	56.32	96.02	86.30
	2	60.12	90.02	86.00/86.30
	2	62.32	92.03	86.00/86.30
	3	55.33	94.03	86.30
	3	60.13	90.03	86.00/86.30
	3	62.33	92.03	86.00/86.30
	4	55.34	94.04	86.30
	4	56.34	96.04	86.00/86.30

Технические параметры

Спецификация ЕМС			
Тип проверки	Ссылка на стандарт	86.00	86.30
Электростатический разряд	EN 61000-4-2	4 kV	n.a.
	EN 61000-4-2	8 kV	8 kV
Электромагнитное поле РЧ-диапазона ($80 \div 1,000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$	$10 \mathrm{~V} / \mathrm{m}$
Быстрый переходный режим (разрыв) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) на клеммах питания	EN 61000-4-4	4 kV	2 kV
Колебания (1.2/50 мкс) обычный режим	EN 61000-4-5	4 kV	2 kV
лри подаче питания диференциальный режим	EN 61000-4-5	4 kV	1 kV
Общий режим для P --диапазона ($0.15 \div 80 \mathrm{MHz}$) на клеммах питания	EN 61000-4-6	10 V	10 V
Радиационное и кондуктивное излучение	EN 55022	класс В	класс В
Прочее	86.00	86.30	
Ток абсорбции управляющего сигнала (B1) mA	1	-	
Потери мощности	0.1 (12 V) - 1 (230 V)	0.2	
	Cм. серии репе 56, 60 и 62	См. серии $56,60,6$	$40,44,46,55,$

Примечание: Задайте диапазоны времени и функции до подачи электропитания на таймер. Для задания минимального временного интервала 0.05сек. необходимо выбрать одну из функций с управляющим сигналом. При задании очень коротких интервалов времени следует принимать во внимание время срабатывания самого реле.

Функции

\mathbf{U}	$=$Напряжение питания $\mathbf{S}$$=$Управляющий сигнал
\mathbf{v}	$=$Выходной контакт

Светодиод Тип 86.00	Светодиод Тип 86.30	Напряжение питания	Выходной контакт НО
		Выкл	Открыт
$\square \square \square$		Вкл	Открыт
		Вкл	Открыт (отсчет времени)
		Вкл	Закрыт

Старт по питанию = Старт по замыканию контактов питания (А1).
Управляющий сигнал = Старт по замыканию контактов управления (B1).

Схемы подключения

Без сигнала START

с сигналам START

* Для электропитания DC, «плюс» подключается к клемме В1 (согласно EN 60204-1). Контакт S применяется для подключения управляющего сигнала к клемме B1 (Не подключать никакую другую нагрузку к этой точке).

Тип 86.00

(DI) Интервалы.

Питание подается на таймер. Контакт замыкается немедленно. По прошествии предустановленного времени контакт возвращается в исходное положение.

(SW) Симметричный повтор цикла (начал.импульс ВКЛ).

Питание подается на таймер. Выходные контакты
срабатывают немедленно и переключаются между положениями вкл. и выкл. до тех пор, пока подается питание. Соотношение 1: 1 (время во вкл. состоянии = времени в выкл. состоянии).
(ВЕ) Задержка отключения с управляющим сигналом.
Электропитание постоянно подается на таймер.
Выходные контакты замыкаются при подаче управляющего сигнала (S). При размыкании контактов управляющего сигнала, контакты выходного сигнала размыкаются с заданной задержкой по времени.

(CE) Задержка включенин и отключения с управлнющим сигналом
Электропитание постоянно подается на таймер. Контакты управляющего сигнала (S) инициирует замыкание выходных контактов с заданной задержкой по времени. Размыкание управляющих контактов инициирует размыкание выходных контактов с той же задержкой по времени.

(DE) Интервалы по управляющему сигналу при

 включении.Электропитание постоянно подается на таймер. При кратковременном или постоянном замыкании контактов управляющего сигнала (S), выходные контакты незамедлительно замыкаются на предустановленный интервал времени.
(ЕЕ) Интервалы по управляющему сигналу при отключении. На таймер все время должно подаваться питание. При размыкании НО управляющего контакта, выходной сигнал преобразуется. По прошествии заданного времени пред установки, контакт возвращается в исходное положение.
(FE) Интервалы по управляющему сигналу при включении + при отключении.
На таймер все время должно подаваться питание. При размыкании или замыкании НО управляющего контакта. выходной сигнал преобразуется. По прошествии заданного времени предустановки. контакт возвращается в исходное положение.

Схемы подключения

Тип 86.30

Розетка с винтовым зажимом для монтажа на
поверхность или 35 мм рейку (EN 60715)
Тип реле

Аксессуары

Сертифрикация (В соответствии с типом)

Металлическая клипса	09
6-полюсная перемычка	090
Маркировочная этикетка	090
Модульные таймеры	86.0
Технические параметры	

Технические параметры
Сдвоенная клемма А1 (для удобства подключения)

Номинальные значения	$10 \mathrm{~A} \mathrm{-} \mathrm{250} \mathrm{V}$		
Электрическая прочность		2 kV AC	
Категория защиты		IP 20	
Температура окружоющей среды	${ }^{\circ} \mathrm{C}$	$-40 . .+70$	
(4) Момент завинчивания	Hm	0.6	
Длина зачистки проводо	мм	10	
Макс. размер провода для розеток 90.02 и 90.03		одножильный провод	многожильный провод
	мм 2	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$

6-полюсный шинный соединитель для розеток серии 90.02 и 90.03	090.06
Номинальные значения	$10 \mathrm{~A}-250 \mathrm{~V}$

86 Серия - Модульные Таймеры

92.03	Розетка с винтовым зажимом для монтажа на поверхность или 35 мм рейку (EN 60715)		92.03 синий	$92.03 .0$ черный
	Тип реле		62.32, 62.33	
	Аксессуары			
	Металлическад клипса (поставлнется с розеткой-код корпуса SMA)		092.71	
Сертификация	Маркировочная этикетка		092.00.2	
(В соответствии с типом)	Модульные таймеры		86.00, 86.30	
CE SP PG	Технические параметры			
	Номинапьные значения		16A-250 V	
US	Изоляция		$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ между катушкой и контактами	
	Категория защиты		IP 20	
	Температура окружающей среды ${ }^{\circ} \mathrm{C}$		$-40 \ldots+70$ (см. схему L92)	
	(가) Момент завинчивания	Нм	0.8	
	Длина зачистки провода	mm	10	
	Макс. размер провода для розеток 92.03		одножильный провод	многожильный провод
		MM ${ }^{2}$	1x10 / 2x4	1x6/2x4
		AWG	1x8/2x12	1x10 / 2x12

L 92 - Номинальный ток при темп. окружающей среды

86 Серия - Модульные Таймеры

94.04	Розетка с винтовым зажимом для установк поверхность или на 35мм рейку		94.02 синий	$94.02 .0$ черный	94.03 синий	$94.03 .0$ черный	94.04 синий	94.04.0 черный
	Тип реле		55.32		55.33		55.32, 5	. 34
	Аксессуары							
	Металлический удерживающий зажим		094.71					
Сертификация (В соответствии с типом):	Пластиковый удерживающий зажим (поставляется с розеткой -код корпуса SPA)		094.91.3	094.91.30	094.91.3	094.91.30	094.91.3	094.91.30
	6-полюсная перемычка		094.06	094.06.0	094.06	094.06.0	094.06	094.06.0
	Маркировочная этикетка		094.00.4					
	Модульные таймеры		86.30					
094.91.3	Блок маркировок для пластиковых удерживающих зажимов 094.01, 72 знака, 6х 12 мм		060.72					
	Технические параметры							
	Номинальные значения		$10 \mathrm{~A}-250 \mathrm{~V}$					
	Электрическая прочность		2 kV AC					
	Категория защиты		IP 20					
	Температура окружающего воздуха	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$					
T1	(23) Момент завинчивания	Hм	0.5					
	Длина зачистки правода	MM	8					
[17878	Макс размер провода для розеток 94.02/03/04		одножильный провод			многожильный провод		
17		MM ${ }^{2}$	1x6 / 2x2.5			1x4/2x2.5		
060.72		AWG	1x10/2x14			1x12 / 2x14		

6-полюсный шинный соединитель длн розеток серии 94.02, 94.03 и 94.04
Номинальные значения

$$
10 \mathrm{~A}-250 \mathrm{~V}
$$

	Розетка с винтовым зажимом для установки на поверхность или на 35мм рейку	95.03 синий	95.03.0 черный	95.05 синий	95.05.0 черный
	Тип реле	40.31		40.51/52/61, 44.52/62	
	Аксессуары				
95.05	Металлическая клипса	095.71			
Сертификация (В соответствии с типом)	Пластмассовая клипса (поставляется с розеткой- код корпуса SPA)	095.01	095.01.0	095.01	095.01.0
C ϵ (1) PG (H) ${ }^{c}{ }^{-7 \mathbf{N}_{\text {us }}^{\circ}}$	8 8-полюсная перемычка	095.18	095.18 .0	095.18	095.18 .0
	Маркировочная этикетка	095.00 .4			
	Модульные таймеры	86.30			
095.01	Блок маркировочных этикеток для пластмассовых клипс 095.01, 72 этикетки, 6×12 мм	060.72			
	Технические параметры				
	Номинальные значения	$10 \mathrm{~A}-250 \mathrm{~V}$ *			
	Изоляция	$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ между катушкой и контактами			
	Категория защиты	IP 20			
- miniminmenti	Температура окружающего воздуха ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$			
$1{ }^{\text {anin }}$	(12] Момент завинчивания Нм	0.5			
Winmiliminim	Длина зачистки провода мм	8			
\% [iminimanimin	Макс. размер провода дпя розеток 95.03 и 95.05	одножильный провод		многожильный провод	
	M ${ }^{2}$	1x6/2x2.5		1x4/2x2.5	
0.72	AWG	1×10/2x14		1 $\times 12 / 2 \times 14$	

* При токе > 10 А необходимо подключить клеммы в параллель (21 с 11, 24 с 14, 22 с 12).

(В соответствии с типом)

C ${ }^{\text {g Mis }}$

060.72

96.02

$96.02+56.32+094.91 .3+86.30$

96.04

$96.04+56.34+096.71+86.00$

6-полюсный шинный соединитель дпа розеток серии 96.02
094.06 (голубой) 094.06 .0 (черный)

Номинальные значения $10 \mathrm{~A}-250 \mathrm{~V}$

Розетка с винтовым зажимом для установки на
поверхность или на 35мм рейку

Тип реле

Аксессуары

Сертификация (В соответствии с типом)

${ }^{c} \mathbf{D N}_{\text {us }}^{\circ}$
Пластиковый удерживающий зажим

(поставляется с розеткой. код корпуса SPA)	
8-полюснаяная перемычка	оя
Маркировочная этикетка	
Модульные таймеры	
Технические парометры	

Технические парометры
Номинальный ток

97.01 синий	97.02 черный
46.61	46.52
097.01	
095.18 (синий)	095.18 .0 (черный)
095.00.4	
86.30	
$16 \mathrm{~A}-250 \mathrm{VAC}$	8 A - 250 V AC
$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ между катушкой и контактами	
IP 20	
$-40 . . .+70$ (см. схему L97)	
0.8	
8	
одножильный провод	многожильный провод
1x6 / 2x2.5	1x4/2x2.5
1x10 / 2x14	1x12 / 2x14

(для комбинации реле 46.61 / розетки 97.01)

8-полюсный шинный соединитель для розеток серии 97.01 и 97.02
 Номинальные значения

$$
\begin{aligned}
& 97.02+46.52+097.01 \\
& +86.30
\end{aligned}
$$

$$
\begin{array}{l|l}
095.18 \text { (голубой) } & 095.18 .0 \text { (черный) } \\
10 \mathrm{~A}-250 \mathrm{~V}
\end{array}
$$

86 Серия - Модульные Таймеры

	Розетка с пружинным зажимом, монтаж на панель или на DIN-рейку 35мm (EN 60715)	97.51 синий	97.52 черный
	Тип реле	46.61	46.52
	Аксессуары		
Сертификация	Пластиковый удерживающий зажим (поставляется с розеткой -код корпуса SPA)	097.01	
(В соответствии с типом):	Модульные таймеры	86.30	
(1)	Технические порометры		
	Номинальный ток	$10 \mathrm{~A}-250 \mathrm{VAC}$	8 A-250 V AC
	Электрическая прочность	$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ между	шкой и контактами
	Категория защиты	IP 20	
	Температура окружающей среды ${ }^{\circ} \mathrm{C}$	$-25 . . .+70$	
	Длина зачистки провода мм	8	
1-407.01	Макс. размер провода для розеток 97.51 и 97.52	одножильный провод	многожильный провод
	MM ${ }^{2}$	2x(0.2...1.5)	2x(0.2...1.5)
	AWG	2x(24...18)	2x(24...18)

Характеристики

Одно- и многофункциональные таймеры ширина 22.5 мм
87.01-1 контакт - Многофункциональный, различные типы питания
87.02-2 контакта - Многофункциональный, различные типы питания, (варианты с задержкой срабатывания + без задержки
Вариант с заданием времени с помощью внешнего потенциометра
Широкий диапазон типов питания:
(24...240)V AC / (24...48)V DC

Светодиодный индикатор
Установка времени от 0,05 с до 60 ч
Установка на 35-мм рейку (EN 60715)
87.01 / 87.02

Винтовой зажим

Многофуункциональные
1 полюс
Установка на 35-мм рейку (EN 60715)

Al: Задержка включения
BE: Задержка отключения с управляющим сигналом
CE: Задержка включения и отключения с
управляюцим сигналом
DE: Интервалы по управляющему сигналу при включении
D: Интервалы
EE а:Интервалы по управляющему сигналу при отключении
GI: Импульсыс задержкой
sW: Симметричный повтор цикла (начальный импульс ВКЛ)
GI: Импульсы с задержкой
SW: Симметричный повтор цикла (начальный импульс ВКЛ)

Схема подключения
Схема подключения (с сигналом START)
87.02

Многофункциональные
Настройку времени можно выполнять с помощью внешнего потенциометра
2 контакта с задержкой срабатывания, или 1 контакт с задержкой + 1 контакт без задержки Установка на 35-мм рейку (EN 60715)
Al: Задержка включения
BE: Задержка отключенин суправляющим сипналом
CE: Задержка включения иотключения с управляюшим сигналом
DE: Интервалы по управляющему сигналу при включении
D: Интервалы
EE a: Интервалы по управляющему сигналу при отключении
(

Схема подключения
(без сигнала START)

Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток A
Ном.напряжение/Макс.напряжение V AC
Номинальная нагрузка AC1 VA
Номинальная нагрузка AC15 (230 V AC) VA
Допустимая мощность односразного двигателя (230 VAC) kW
Отключающая способность DC1: 30/110/220 VA
Минимальная нагрузка переключения mW (V/mA)
Стандартный материал контактов
Характеристики питания

Ном. напряжение $\left(\mathrm{U}_{\mathrm{N}}\right)$	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
	V DC
Номинальная нагрузка AC/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$	
Рабочий диапазон	AC

Технические параметры

Временные диапазоны
Способность повторения $\%$

Время перекрытия	ms
Минимальный управляющий импульс ms	

Погрешность точности всего диапазона уставки \%
Электринескад долговенность при номиннал.нәруззке AC1 циклов
Диапазон температур ${ }^{\circ} \mathrm{C}$
Категория защиты
Сертификация (в соответствии с типом)

	2 CO (DPDT)
	$8 / 30$
	$250 / 400$
	2,000
	400
	0.185

400
0.185
80.510 .2

$8 / 0.5 / 0.2$
$300(10 / 5)$

AgCdO
$24 \ldots 240$
$24 \ldots 48$
$5 / 0.5$
$(0.85 \ldots 1.1) U_{N}$
$(0.85 \ldots 1.2) U_{N}$

См. стр. 6
См. стр. 6 ± 0.2
50
50
\square

± 5	± 5
$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
$-20 \ldots+70$	$-20 \ldots+60 /-20 \ldots+70$

$-20 \ldots+70$
IP 20
$-20 . . .+60$
IP 20

87 серия - Модульные таймеры 5-8 А

Характеристики

Одно- и многофункциональные таймеры ширина 22.5 мм
87.11 - Задержка включения, различные типы питания
87.21 - Интервалы, различные типы питания 87.31 - Симметричный повтор цикла (начальный импульс ВКЛ), различные типы питания

1 выходной контак
Широкий диапазон типов питания:
(24...240)V AC / (24...48)V DC

Светодиодный индикатор
Задание времени:
Тип 87.11/21-0.05 с до 60 ч
Тип 87.31-0.5 с до 10 мин
Установка на 35-мм рейку (EN 60715)

87.11 / 87.21 /87.31
 Винтовой зажим

Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток
Ном.напряжение/Макс.напряжение
Номинальная нагрузка AC1 VA
Номинальная нагрузка AC15 (230 V AC) VA
Допустимая мощность односаазного двигателя (230 VAC) kW
Отключающая способность DC1: 30/110/220 VA
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал контактов
Характеристики питания
Ном. напряжение $\left(\mathrm{U}_{\mathrm{N}}\right) \quad$ V AC $(50 / 60 \mathrm{~Hz})$
Номинальная нагрузка AC/DC VA (50 Hz)/W
Рабочий диапазон \quad AC

Технические параметры

Временные диапазоны
Способность повторения
Время перекрытия
Минимальный управляющий импульс $\quad \mathrm{m}$
Погрешность точности всего диапазона уставки \%
Электринескан долговенность при номинал.нагрузке АС1 циклов
Диапазон температур

Категория защиты
Сертификация (в соответствии с типом)

AI: Задержка включенин

Схема подключения (без сигнала START)

Характеристики

Одно- и многофункциональные таймеры ширина 22.5 мм
87.41 - Задержка отключения с управляющим сигналом, различные типы питания, 1 полюс 87.61-Задержка отключения по питанию (питание ВЫКЛ), различные типы питания, 1 полюс 87.62 - Задержка отключения по питанию (питание ВЫКЛ), различные типы питания, 2 полюс

Широкий диапазон типов питания:
Тип 87.41, (24...240) V AC/(24...48)V DC
Тип 87.61/62, (24...240) V AC/DC
Светодиодный индикатор
Диапазон задания времени:
Тип 87.41-0.05 с до 60 ч
Тип 87.61/62-0.15 с до 10 мин
Установка на 35 -мм рейку (EN 60715)
87.41 / 87.61 / 87.62

Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток A
Ном.напряжение/Макс.напряжение V AC

Номинальная нагрузка AC1 VA
Номинальная нагрузка AC15 (230 V AC) VA

Догустиман мощность однофазного двигателя (230 V AC) kW

Отключающая способность DC1: 30/110/220 VA
Минимальная напрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Стандартный материал контактов

Характеристики питания

Ном. напряжение (U_{N}) VAC (50/60 Hz)

	V DC
Номинальная нагрузка AC/DC VA (50 Hz)/W	
Рабочий диапазон	AC

Технические параметры

Временные диапазоны

Способность повторения	\%
Время перекрытия	ms
Минимальный управляющий импульс	ms
Погрешность точности всего диапазонауставки $\%$	
Электринескандолговечность при номинал.нагрукке АС1	цилпов
Диапазон температур	${ }^{\circ} \mathrm{C}$

Категория защиты
Сертификация (в соответствии с типом)

87.41 - Однофункциональное - 1 полюс - Установка на 35 -мм рейку (EN 60715)	87.61 - Однофункциональное - 1 полюс - Установка на 35-мм рейку (EN 60715)	87.62 - Однофункциональное - 2 полюса - Установка на 35 -мм рейку (EN 60715)
BE: Задержка отключения с управляющим сигналом Схема подключения (с сигналом START)	BI: Задержка отключения по питанию (питание ВЫКЛ) Схема подключения (6ез сигнала START)	BI: Задержка отключения по питанию (питание ВЫКЛ) Схема подключения (6ез сигнала START)
1 CO (SPDT)	1 CO (SPDT)	2 CO (DPDT)
8/30	5/10	5/10
250/400	250/400	250/400
2,000	1,250	1,250
400	250	250
0.185	0.125	0.125
8/0.5/0.2	5/0.5/0.2	5/0.5/0.2
300 (10/5)	300 (10/5)	300 (10/5)
AgCdO	AgCdO	AgCdO
24... 240	24... 240	24... 240
24... 48	24... 240	24... 240
5/0.5	1.5/1.5	1.5/1.5
(0.85...1.1) U_{N}	(0.85...1.1) U_{N}	(0.85..1.1) U_{N}
(0.85..1.2) U_{N}	(0.85 ..1.2) U_{N}	(0.85..1.2) U_{N}
См. стр. 6	См. стр. 6	См. стр. 6
± 0.2	± 1	± 1
50	200	200
50	$800 \mathrm{~ms} \mathrm{(A1-A2)}$	$800 \mathrm{~ms} \mathrm{(A1-A2)}$
± 5	± 5	± 5
$100 \cdot 10^{3}$	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
-20...+70	-20...+70	$-20 \ldots+70$
IP 20	IP 20	IP 20
CE (GL) PG ©Us	CE	-(11) us

87 серия - Модульные таймеры 5-8 А

Характеристики

Одно- и многофункциональные таймеры ширина 22.5 мм
87.82 - Звезда-Треугольник, различные типы питания, выходные контакты типа "звезда" и "треугольник"

87.91 -Многофункциональные

 Таймер повтора цикла, 1 полюсШирокий диапазон типов питания:
(24...240)V AC / (24...48)V DC

Светодиодный индикатор
Диапазон задания времени:
Тип 87.82-0.05 мин до 1 мин
Тип 87.91-0.05 с до 60 ч
Установка на 35-мм рейку (EN 60715)

87.82 / 87.91

Винтовой зажим

Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток
Ном.напряжение/Макс.напряжение V AC
Номинальная нагрузка AC1 VA
Номинальная нагрузка AC15 (230 V AC) VA
Допустимая мощность односазного двигателя (2зо VAC) kW

Отключающая способность DC1: 30/110/220 VA
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Стандартный материал контактов

Характеристики питания

Ном. напряжение $\left(\mathrm{U}_{\mathrm{N}}\right)$	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
	V DC
Номинальная нагрузка AC/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$	
Рабочий диапазон	AC

Технические параметры

Временные диапазоны
Способность повторения

Время перекрытия	m
Минимальный управляющий импульс	m

Погрешность точности всего диапазона уставки \%
Электрнескан долговенность при номинал.нагрузке АС1 циклов
Диапазон температур
Категория защиты
Сертификация (в соответствии с типом)
87.82

- Монофункциональный:
"звезда-треугольник"
2 полюса
- Установка на 35-мм рейку (EN 60715)

SD: Звезда-Треугольник

Схема подключения (6ез сигнала START)
87.91

- Многофункциональный повтор цикла
- 1 полюс
- Установка на 35-мм рейку (EN 60715)

LI: Асимметричный повтор цикла (начальный импульс ВКЛ)
LE: Асимметричный повтор цикла по управляющему сигналу (начальный импульс ВКЛ)
PI: Асимметричный повтор цикла (начальный импульс ВЫКЛ)
PE:Асимметричный повтор цикла по управляющему сигналу (начальный импульс ВЫКЛ)

Схема подключения (6ез сигнала START)

N/-
Схема подключения (с сигналом START)

Информация по заказам

Пример: Многоффункциональный таймер 87 серии 8 A, 1 CO (SPDT) контакт, питание (24...240)V AC (50/60 Hz) и (24...48)V DC.

Технические параметры

87 серия - Модульные таймеры 5-8 А

Временные диапазоны

функции

$\mathbf{U}=$ Напряжение питания

$\mathbf{S}=$ Сигнал включение
C = Выходной контакт

СВЕТОДИОД ** зеленый	Таймер	Выходной контакт НО	Контакты С задержкой		Двухрядный переключа тепь	КонтактыМгновенный *	
	Нет	Открыт	$\begin{aligned} & 15-18 \\ & 25-28^{*} \end{aligned}$	$\begin{aligned} & 15-16 \\ & 25-26^{\star} \end{aligned}$	Вверх ت Вних	21-24*	21-22*
\|	Выполняется	Открыт	$\begin{aligned} & 15-18 \\ & 25-28^{\star} \end{aligned}$	$\begin{aligned} & 15-16 \\ & 25-26^{\star} \end{aligned}$		21-22*	21-24*
-	Выполняется	Закрыт	$\begin{aligned} & 15-16 \\ & 25-26^{*} \end{aligned}$	$\begin{aligned} & 15-18 \\ & 25-28^{\star} \end{aligned}$		21-22*	21-24*
	Нет	Закрыт	$\begin{aligned} & 15-16 \\ & 25-26^{*} \end{aligned}$	$\begin{aligned} & 15-18 \\ & 25-28^{*} \end{aligned}$		21-22*	21-24*

* 25-26-28 только для типа 87.02 с двумя 2 тактированными контактами. 21-22-24 только для типа 87.02 с 1 мгновенно срабатывающим контактом + 1 тактированным, позиционирующим передний двухрядный переключотель.
** Светодиод на типах 87.61 и 87.62 загорается при подаче питания на таймер.
Схемы подключения

Многофункциональные Без сигнала START

87.01

с сигналам START

87.01

* Напряжение, отличное от напряжения питания, можно применить для команды START (B1). Пример:
$\mathrm{A} 1-\mathrm{A} 2=230 \mathrm{~V} \mathrm{AC}$
$\mathrm{B} 1-\mathrm{A} 2=24 \mathrm{~V}$ AC
** Тип 87.02: регулируется с использованием внешнего потенциометра ($10 \mathrm{k} \Omega-0.25 \mathrm{~W}$).
NB.: удалить цепь между Z1-Z2 и установить потенциометр таймера на "ноль"

Тип 87.01 87.02

(AI) Задержка включения.
Питание подается на таймер. Контакт замыкается по прошествии предустановленного времени.
Сброс происходит при выключении питания.
(DI) Интервалы.

Питание подается на таймер. Контакт замыкается немедленно. По прошествии предустановленного времени контакт возвращается в исходное положение.

(GI) Импульсы с задержкой.

Питание подается на таймер. Контакт замыкается по прошествии времени предустановки. Сброс происходит па истечении фиксированного прамежутка времени 0.5 с.
(SW) Симметричный повтор цикла (начал.импульс ВКЛ). Питание подается на таймер. Выходные контакты срабатывают немедленно и переключаются между положениями вкл. и выкл. до тех пор, пока подается питание. Соотношение $1: 1$ (время во вкл. состоянии = времени в выкл. состоянии).
(ВЕ) Задержка отключения с управляющим сигналом.
Электропитание постоянно подается на таймер. Выходные контакты замыкаются при подаче управляющего сигнала (S). При размыкании контактов управляющего сигнала, контакты выходного сигнала размыкаются с заданной задержкой по времени.

(СЕ)Задержка включения и отключения с

 управляющим сигналомЭлектропитание постоянно подается на таймер. Контакты управляющего сигнала (S) инициирует замыкание выходных контактов с заданной задержкой по времени. Размыкание управляющих контактов инициирует размыкание выходных контактов с той же задержкой по времени.

(DE) Интервалы по управляющему сигналу при включении.

Электропитание постоянно подается на таймер. При кратковременном или постоянном замыкании контактов управляющего сигнала (S), выходные контакты незамедлительно замыкаются на предустановленный интервал времени.

(EE а) Интервалы по управляющему сигналу при

 отключении.На таймер все время должно подаваться питание. При размыкании НО управляющего контакта, выходной сигнал преобразуется. По прошествии заданного времени пред установки, контакт возвращается в исходное положение.

Постоянно включено

Выбор функции ВКЛ при подаче питания но реле ведет к немедленному срабатыванию контакта, который остается в этом состоянии.

Постоянно выключено.

Контакт возвращается в исходное состояние при выборе функции ВЫКЛ.

функции

Схемы подключения

Характеристики

Многофункциональные таймеры с различными типами питания - Установка на переднюю панель или с помощью розетки

- Вариант с 8-11-штырьковым штепсельным разъемом
Временные промежутки от 0,05 с до 100 ч Версия " 1 контакт с задержкой + 1 контакт без задержки"(тип 88.12)
Установка на переднюю панель
Розетки 90 серии

Характеристики контактов
Конфигурация контактов
Номинальный ток/Макс.пиковый ток A
Номинальная нагрузка AC1 VA
Номинальная нагрузка AC15 (230 V AC) VA
Догустиман мощность односразного двигателя (230 V AC) kW
Отключающая способность DC1: 30/110/220 VA
Минимальная нагрузка переключения $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Стандартный материал контактов
Характеристики питания
Ном. напряжение $\left(\mathrm{U}_{\mathrm{N}}\right) \quad$ V AC $(50 / 60 \mathrm{~Hz})$
Номинальная нагрузка AC/DC VA (50 Hz) N
Рабочий диапазон \quad VAC
Технические параметры
Временные диапазоны

Способность повторения	\%
Время перекрытия	m
Минимальный управляющий импульс	m
Погрешность точности всего диапазона уставки $\%$	
Электриескаядолговеннсть при номинал.нагузке АС1 цикло	
Диапазон температур	\circ

Категория защиты
Сертификация (в соответствии с типом)
A
88.02

- Многофункциональные
- 11 штырьковых контактав

Штепсельный разъем для использования с розетками 90 серии

AI: Задержка включения
DI: Интервалы
GI: Импульсы с задержкой
SW: Симметричный повтор цикла
(начальный импульс ВКЛ)
(6ез сигнала START)

BE: Задержка отключения с управляющим сигналом
CE:Задержка включения и отключения с управляющим сигналом
DE: Интервалы по управляющему сигналу при включении
(с сигналом START)

88.12

Многофуункционольные
8 штырьковых контактов, 2 контакта с задержкой срабатывония или 1 контокт с задержкой +1 контакт без задержки Штелсельный розъем для ислользования с розетками 90 серии

AI a: Задержка включения (2 контакта с задержкой) Al b: Задержка включения (1 контакт с задержкой включеннн +1 контакт без задержки)
DI a: Интервалы (2 контакта с задержкой)
DI b: Интервалы (1 контакт с задержкой включення + 1 контакт без задержки)
GI: Импульсыс задержкой
SW: Симметричный повтор цикла (начальный импульс ВКЛ)
(6ез сигнала START)

2 C

$8 / 15$	
$250 / 250$	
2,000	

$5 / 10$
$250 / 400$

400	1,250
0.3	250
$8 / 0.3 / 0.12$	0.125

\square
500 (5/5)

$24 \ldots 230$
$24 \quad 230$

AgCdO
2.5

Информация по заказам

Пример: Многофункциональный таймер 88 серии, 2 CO (DPDT) контакт 8 A , питание ($24 . . .230$) V AC ($50 / 60 \mathrm{~Hz}$) и ($24 . . .230$)V DC.

Технические параметры

Спецификация ЕМС		
Тип проверки	Ссылка на стандарт	
Электростатический разряд Контактный разряд	EN 61000-4-2	4 kV
Воздушный разряд	EN 61000-4-2	8 kV
Электромагнитное поле РЧ-диапазона ($80 \div 1,000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
Быстрый переходный режим (разрыв) (5-50 не, 5 кГц) на клеммах питания	EN 61000-4-4	2 kV
Импульсы (1.2/50 мкс) на клеммах общий режим	EN 61000-4-5	2 kV
питания дифференциальный режим	EN 61000-4-5	1 kV
Общий режим для РЧ-диапазона (0.15 $\div 80 \mathrm{MГц)} \mathrm{на} \mathrm{клеммах} \mathrm{питания}$	EN 61000-4-6	3 V

Выбор: функции, времени срабатывания и единиц измерения времени

		$\mathbf{8 8 . 0 2}$	$\mathbf{8 8 . 1 2}$
E	Селектор функции	$\mathrm{Al}, \mathrm{DI}, \mathrm{GI}, \mathrm{SW}, \mathrm{BE}, \mathrm{CE}, \mathrm{DE}$	$\mathrm{Al} \mathrm{a} ,\mathrm{Al} \mathrm{b} ,\mathrm{DI} \mathrm{a} ,\mathrm{DI} \mathrm{b}, \mathrm{GI} SW$,
D	Селектор времени	$0.5,1,5,10$	
H	Селектор единиц времени	s (секунды), \min (минуты), һ (часы), 10h (10 часов)	

Временные диапазоны

Таблица значений

D	H	s	min	h
$\mathbf{0 . 5}$	0.5 сек	0.5 мин	0.5 час	5 час
$\mathbf{1}$	1 сек	1 мин	1 час	10 час
$\mathbf{5}$	5 сек	5 мин	5 час	50 час
$\mathbf{1 0}$	10 сек	10 мин	10 час	100 час

ПРИМЕЧАНИЕ: временные диапазоны и функции необходимо задавать да подачи питания на таймер.

Светодиод/индикация

A	Желтый светодиод: питание ВКЛ (U)
B	Красный светодиод: идет отсчет времени таймерам (C)
\mathbf{C}	Выбрана единица времени
\mathbf{F}	Выбрана функция
\mathbf{G}	Выбрано время

функции

U = Напряжение питания	СВЕТОДИОД	СВЕТОДИОД (красный)	Напряжение питания	Выходной контакт НО	Контакт	
	(желтый)				Открыт	Закрыт
$\begin{gathered} \mathrm{S}=\text { Переключение } \\ \text { сигнала } \end{gathered}$			Выкл	Открыт	x1-x4	x1-x2
$\mathbf{P}=$ Пауза			Вкл	Открыт	$\begin{aligned} & x 1-x 4 \\ & x 1-x 2 \end{aligned}$	$\begin{aligned} & x 1-x 2 \\ & x 1-x 4 \end{aligned}$
R = Сброс			Вкл	Открыт (отсчет времени)	x1-x4	x1-x2
$工=\underset{\text { контакт }}{\substack{\text { Выхой }}}$			Вкл	Закрыт	x1-x2	x1-x4

Схемы подключения
Тип 88.02

(AI) Задержка включения.

Питание подается на таймер. Контакт замыкается по прошествии предустановленного времени.
Сброс происходит при выключении питания.
(DI) Интервалы.

Питание подается на таймер. Контакт замыкается немедленно. По прошествии предустановленного времени контакт возвращается в исходное положение.
(GI) Импульсы с задержкой.
Питание подается на таймер. Контакт замыкается по прошествии времени предустановки. Сброс происходит па истечении фиксированного прамежутка времени 0.5 с.
(SW) Симметричный повтор цикла (начал.импульс ВКЛ). Питание подается на таймер. Выходные контакты срабатывают немедленно и переключаются между положениями вкл. и выкл. до тех пор, пока подается питание. Соотношение $1: 1$ (время во вкл. состоянии = времени в выкл. состоянии).
(ВЕ) Задержка отключения с управляющим сигналом. Электропитание постоянно подается на таймер. Выходные контакты замыкаются при подаче управляющего сигнала (S). При размыкании контактов управляющего сигнала, контакты выходного сигнала размыкаются с заданной задержкой по времени.

(СЕ) Задержка включения и отключения с

 управляющим сигналомЭлектропитание постоянно подается на таймер. Контакты управляющего сигнала (S) инициирует замыкание выходных контактов с заданной задержкой по времени. Размыкание управляющих контактов инициирует размыкание выходных контактов с той же задержкой по времени.
(DE) Интервалы по управляющему сигналу при включении.
Электропитание постоянно подается на таймер. При кратковременном или постоянном замыкании контактов управляющего сигнала (S), выходные контакты незамедлительно замыкаются на предустановленный интервал времени.

СБРOC (R)
Краткое замыкание переключотеля сброса (2-7) обнулит таймер. Длительное замыкание переключателя сброса удерживает таймер в нулевом состоянии. Это распространяется на все функции.

ПАУЗА (P)

Замыкание переключотеля паузы (2-5) немедленно прекращает отсчет времени таймером, однако прошедший отрезок времени запоминается, и текущее состояние выходных контактов сохранится.
После размыкания переключотеля паузы процесс отсчета времени таймером возобновится с сохраненной точки. Это распространяется на все функции.

функции

Схемы подключения
Тип 88.12

Характеристики

Тонкоя розетка со встроенным многофункциональным таймером (ширина 6.2 мм)

Настройка таймера с помощью поворотной ручки на передней панели доступной после установки
Клемма управляющего сигнала
DIP-переключатель для выбора 4-х шкал времени и 8-и функций
Опция Предохранитель для выходных цепей
EMR и SSR: 12 до 24 V AC/DC

93.68
 Винтовой зажим

AI: Задержка включения
DI: Интервал
GI: Импульсы с задержкой (0.5 s)
SW:Симметричный повтор цикла (начальный импульс Вкл.)
BE: Задержка отключения с управляющим сигналом
CE: Задержка включения и отключения с управляющим сигналом
DE: Интервалы по управлающему сигналу при включении
EE: Интервалы по управляющему сигналу при отключении
Характеристики контактов
Конфигурация контактов

Номинальный ток/Макс.пиковый ток A	CM, реле 34,51 и 34.81
Ном.напряжение/Макс.напряжение V AC	
Номинальная нагрузка AC1 VA	
Номинальная нагрузка AC15 (230 V AC) VA	
Допустимая мощность односразного двигателя (230 VAC) kW	
Отключающая способность DC1: 30/110/220 VA	
Минимальная нагрузка переключения mW (V/mA)	
Стандартный материал контактов	
Характеристики питания	
Ном. напряжение (U_{N}) V AC (50/60 Hz)/DC	12... 24
Номинальная нагрузка AC/DC VA/W	См.характеристики катушки, стр. 2
Рабочий диапазон V AC $(50 / 60 \mathrm{~Hz}) / \mathrm{DC}$	9.6...26.4
Технические параметры	
Временные диапазоны	(0.1...3)с, (3...60) с, (1...20)мин, (0.3...6) ч
Способность повторения \%	± 1
Время перекрытия ms	≤ 50
Погрешность точности всего диапазона уставки \%	5
Электринеская долговенность приноминал.нагрузке AC1 циклов	См.реле 34.51 (EMR) и 34.81 (SSR)
Диапазон температур ${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$
Категория защиты	IP 20
Сертификация (в соответствии с типом)	$C E$

Информация по заказам

Пример: Розетка со встроенным многофункциональный таймером 93.68 для 34 серии реле, питание (12...24)V AC/DC.

Версия катушки

$8=1$ CO (EMR тип 34.51)
$8=1$ NO (SSR тип 34.81)

Комбинации	Выход	Напряжение питания	Тип реле	Тип розетки
	1 контакт 6А, электромеханич. реле	12 V AC/DC	34.51.7.012.0010	93.68.0.024
	1 контакт 6А, электромеханич. реле	24 V AC/DC	34.51.7.024.0010	93.68.0.024
	1 выход 2 A 24 V DC, SSR	$12 \mathrm{~V} \mathrm{AC/DC}$	34.81.7.012.9024	93.68.0.024
	1 выход 2 A 240 V AC, SSR	$12 \mathrm{VAC/DC}$	34.81.7.012.8240	93.68.0.024
	1 выход 2A 24 V DC, SSR	$24 \mathrm{~V} \mathrm{AC/DC}$	34.81.7.024.9024	93.68.0.024
	1 выход 2A 240 V AC, SSR	24 V AC/DC	34.81.7.024.8240	93.68.0.024

Примечание: Розетка таймера подходит как для питания 12 B , так и 24B, ее следует комбинировать с соответствующим типом реле, с напряжением 12 B или 24 B ; в результате получаем интерфейсное реле с соответствующим напрнжением питания.

Технические параметры

Спецификация ЕМС

Тип проверки		Ссылка на стандар	
Электростатический разряд	контактный разряд	EN 61000-4-2	4 kV
	воздушный разряд	EN 61000-4-2	8 kV
Электромагнитное поле РЧ-диапазона	$(80 \div 1,000 \mathrm{MHz})$	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
	($1,400 \div 2,700 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
Быстрый переходный режим (разрыв)$\text { (5-50 нс, } 5 \text { кГц) }$	на клеммах питания	EN 61000-4-4	4 kV
	на клеммах управляющего сигнала	EN 61000-4-4	4 kV
Импульсы (1,2/50 мкс) на клеммах питания	общий режим	EN 61000-4-5	2 kV
	дифференциапьный режим	EN 61000-4-5	0.8 kV
P общий режим $(0.15 \div 80 \mathrm{MHz})$	на клеммах питания	EN 61000-4-6	10 V
	на клеммах управляющего сигнала	EN 61000-4-6	3 V
RPадиационное и кондуктивное излучение		EN 55022	класс В
Прочее			
Поглощение тока для управляющего сигнала (B1) mA		$<1.7(12 \mathrm{~V})-<3.5(24 \mathrm{~V})$	
Время дребезга: НО/Н3 Mc		1/6	
Виброустойчивость (EMR,10..55 Гц,): НО/Н3 g		10/5	
Потери мощности	без нагрузки Bт при номинальном токе Bт	0.3	
		0.8	
Клеммы		Однопроволочный и многопроволочный провод	
Длина зачистки провода мм		10	
(f)¢) Момент завинчивания		0.5	
Макс. размер провода	MM ${ }^{2}$	$1 \times 2.5 / 2 \times 1.5$	
	AWG	$1 \times 14 / 2 \times 16$	
Мин.сечение провода	MM ${ }^{2}$	1×0.2	
	AWG	1×24	

Входные характеристики

Параметры входа AC/DC с таймером

Номин. напряж.	Рабочий диапазон (AC/DC)		Напряжение ОТКЛюЧения U_{r}	Расчетный входной ток при U_{N}		Расчетная мощность при U_{N}	
U_{N}	$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max }$		DC	AC	DC	AC
V	V	V	V	mA	mA	W	VA / W
12	9.6	13.2	1.2	15	23	0.2	$0.3 / 0.2$
24	19.2	26.4	2.4	11	19	0.25	0.4 / 0.3

93 Серия - Розетка со встроенным многофункциональным таймером для 34 Серий

- Возможность управления внешней нагрузкой, например катушкой другого реле или таймера, соединенной с сигнальной кпеммой START (B1).

N/ - L/+

** Напряжение, отличное от напряжения питания, можно применить для команды START (B1), например:
$\mathrm{A} 1-\mathrm{A} 2=230 \mathrm{~V} \mathrm{AC}$
$\mathrm{B} 1-\mathrm{A} 2=12 \mathrm{VDC}$

Аксессуары

093.16

093.16.0

093.16 .1

093.60

Предохранитель выходной цепи
093.63

- Запатентованное решение для простой защиты выходной цепи
- Для предохранителей $5 \times 20 \mathrm{mм}$, до $6 \mathrm{~A}, 250 \mathrm{~V}$
- Визуальный контроль состояния предохранителя через окошко
- Быстрая установка в розетке

16-ми полюсный шинный соединитель	093.16 (синий)	093.16 .0 (черный)	093.16 .1 (красный)
Номинальные значения	$36 \mathrm{~A}-250 \mathrm{~V}$		

Обеспечивает много подключений, рядом

Пластиковый разделитель двойного назначения (разделение 1.8мм или 6.2мм)
093.60

1. Путем удаления выступающих ребер (от руки), разделитель становится 1,8 мм толщиной; полезно для визуального разделения разных групп интерфейсов, или для защитного разделения разных напряжений соседних интерфейсов, или длн защиты оголенных концов перемычек.

2. Если выступающие ребра не удалять, обеспечивается разделение модулей 6.2 мм. Если с помощью ножниц вырезать пластиковые сегменты разделителя, то для подключения разных групп модулей можно использовать

Блок маркировок, пластик, 72 знака, 6×12 мм

10Серия- Фото-реле 12-16 А

Характеристики

Реле для автоматического управления освещением в зависимости от уровня внешней освещенности
встроенный датчик освещенности
Для установки на стойке или стене
10.32-2 NO 16А выхода
10.41-1 NO 16А выход

- Возможен вариант с двойным размыканием (фаза+нейтраль) у серии 10.32
- Регулировка чувствительности 1... 80 люкс
- Материал контактов - бескадмиевый
- Бескадмиевый фото-сенсор (IC фото-диод)
- Электр. схема-изолир. от трансформатора Итальянский патент - Инновационная технология "компенсации по свету". Совместимо с медленно загорающимися газо-разрядными лампами (до 10 минут) Для первых 3 рабочих циклов время задержки (Вкл. и Выкл) снижено до 0 для нормальной установки устройства Версии реле для $A C 230$ V и $A C 120$ V

10.32

10.41

- Парные выходы - 2 NO 16А • Одиночный выход - для перекл. на фазу и 1 NO 16А для перекл. нейтраль на фазу

1 NO (SPST-NO)
16/30 (120 A - 5 ms)

10 Серия - Фото-реле 12-16 А

Характеристики
Реле для автоматического управления освещением в зависимости от уровня внешней освещенности
встренный датчик освещенности
Для установки на стойке или стене
10.42 - Два независимых 16А выхода с с индив. заданием степ. освещенности
10.51 - Миниатюрный одиночный 12A NO вых.
10.61 - Монтаж на корпус уличного осветителя

Регулировка чувствительности 1... 80 люкс Фиксир.чувствительность 10 люкс (Ѓ\} 20\%) - (модель10.61)

Материал контактов - бескадмиевый Бескадмиевый фото-сенсор
(IC фото-диод)
Электр. схема-изолир. от трансформатора (модель 10.42)
Итальянский патент - Инновационная технология "компенсации по свету" (модель 10.51)
Для первых 3 рабочих циклов время задержки (Вкл. и Выкл) снижено до 0 для нормальной установки устройства
Версии реле для AC 230 V и AC 120 V
Встроенный силиконовый провод, длина 500 мм (модель 10.61)

Характеристики контактов

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напрнжение \quad в
Номинальнан нагрузка AC
Номинальная нагрузка AC15 BA
Номинальный ток AC5a A

Ном. мощность потр. ламп: накаливания Вт
скомпенсированные люминесцентные Вт
некомпенсированные люминесцентные Вт
$\begin{array}{r}\text { галогенная Вт } \\ \hline \text { Мин. нагрузка на переключение мВт (В/мA) }\end{array}$
Стандартный материап контакта

Напряжение питания

Номин. напряж. (U_{N})

	V DC
Ном. мощн. AC/DC	$\mathrm{BA}(50$ Гц)/Bт
Рабочий диапазон	$\mathrm{AC}(50$ Гц $)$

Технические параметры
Электр. договечность при ном. нагрузке AC1 циклов

| Задание порога | люкс | $1 \ldots 80$ | $1 \ldots 80$ | 10 |
| :--- | ---: | :---: | :---: | :---: | :---: |
| Предустановка порога | люкс | 10 | 10 | 10 |
| Время задержки ВКЛ/ВЫКЛ | с | $15 / 30$ | $15 / 30$ | $15 / 30$ |
| Внешний температурный диапазон | \circ | | | |
| Категория защиты | $-30 \ldots+70$ | $-30 \ldots+70$ | $-30 \ldots+70$ | |
| Сертификация (в соответствии с типом) | IP 54 | IP 54 | IP 54 | |

Информация по заказам

Пример: фото-реле 10 серии, 2 контакта NO (DPST-NO) 16 A, резьбовые соединения, питание 230 В пер. тока.

Технические параметры

Изоляция		10.32 / 41 / 42		10.51		10.61
Электр. прочность между откр. контактами	$V A C$	1,000		1,000		1,000
Нечувствительность к кондуктивным помехам (распространяемым по проводам)						
Скачок (1.2/50 $\mu \mathrm{s}$) на Lи N (дифференциальный режим)	kV	4		4		6
Прочее						
Кабельный наконечник	\emptyset мм	(8.9...12)		(7.5...9)		-
(4) Мом) Мент завинчивания	Нм	0.8		0.8		-
Макс. размер провода		одножильный кабель	многожильный кабель	одножильный кабель	Многожильный кабель	-
	mm^{2}	1x6/2x4	1x6 / 2x2.5	1x6 / 2x 4	1x4 / 2x2.5	-
	AWG	$1 \times 10 / 2 \times 12$	1x10/2x14	1x10/2x12	1x12 / 2x14	-
Отходящий провод						
Материал		-		-		силиконовая изоляция, стойкая к ультрафиолету
Размер	Mm^{2}	-		-		1.5
Длина	MM	-		-		500, с наконечниками
Номинальное напряжение изоляции	kV	-		-		0.6/1
Макс.температура	${ }^{\circ} \mathrm{C}$	-		-		120

Функции

Светодиод*	10.32 / 10.41 / 10.42		10.51	
	Напряжение питания	Номер вых. контакта	Напряжение питания	Номер вых. контакта
	Выкл	Открыт	Выкл или Вкл	Открыт
- _ \| -	Вкл	Открыт	Вкл	Закрыт
	Вкл	Открыт (Синхронизация)	Вкл	Открыт (Синхронизация)
	Вкл	Закрыт	-	-

* Светодиод расположен под крышкой клеммной коробки, рядом с ручкой измен. освещенности. Он показывает статус контакта и позволяет провести проверку, а также задать необходимый порог света.

Схемы электрических соединений

Преимущество технологии "компенсация по свету"

Фото-реле, где контролируемое освещение не влияет на уровень освещенности, который улавливает сенсор

Станд. Фото-реле, где контрол. освещение влияет на уровень освещенности, который улавливает сенсор

Тип 10.32, 10.41 и 10.51
Фото-реле с концепцией
"копменсация по свету"

Правильная работа - при усл., что сенсор экранирован от эффектов контролируемого переключения освещ. Вкл и Выкл

Неверная работа, где лампы работают циклически между Вкл и Выкл, т.к. этот эффект был замечен сенсором

Инновационная технология "компенсация по свету" позволяет избегать раздражующих и причиняющих вред эффектов частых ламповых колебаний между Вкл и Выкл из-за плохой их установки
-■- Внешний уровень света, измеренный внутренним сенсором фото-реле.
В Внешний уровень света + контролируемый уровень света, измеренный внутренним сенсором фото-реле.

Замечания

1. Всегда следует стараться правильно произвести установку фото-реле, когда свет испускаемый лампами не влияет на уровень света, который улавливает сенсор. Технология "компенсация по свету" сможет помочь Вам, когда это полностью недостижимо для обычных фото-реле. Следует принимать во внимание, что фото-реле с этой технологией имеют незначительную задержку времени выключения.
2. Эффект компенсации по свету неэффективен, когда освещенность контролируемого и внешнего света превышает 120 люкс.
3. Типы 10.32 и 10.41 совместимы с газоразрядными лампами, которые достигают полной выходной мощности через 10 мин, с того момента, как электронная схема проконтролирует исходящий свет в период 10 мин, чтобы получить реальную оценку вклада этого освещения в общий уровень освещенности.

11 Серия - Фото-реле 12-16 А

Характеристики

Реле для автоматического управления освещением в зависимости от уровнн внешней освещенности с отдельным фотоэлектрическим сенсором
11.31-1 NO 16 А выходной контакт

- Регулировка уровня чувствительности $1 . . .100$ лк
- Один модуль, ширина 17.5 мм
- Малое энергопотребление
- Питания версия доступна 24 V DC/AC
11.41-1 СО 16 А выходной контакт
- Европейский патент "Нулевого гистерезиса" для экономии энергии, Итальянский патент технология "компенсация по свету"
4-позиционный селектор
Станд. диап. (пороговые значения 1... 80 лк) Высокий диап.(пороговые значения $30 \ldots 1,000$ лк) - Постоянный свет (полезно при установке, начальном тестировании и при ремонте) - Свет выкл (полезно при долгом отсутствии)

Для первых 3 рабочих циклов время задержки (Вкл и Выкл) уменьшено до 0 для правильной установки устройства
Светодиодная индикация статуса
Изоляция SELV для цепей контактов и питания

- Двойнан изоляция между питанием и фотосенсором

Установка на 35 мм рейку (EN 60715)
Материал контактов - бескадмиевый
Бескадмиевый фото-сенсор (IC фото-диод)

См. чертеж на стр. 8
Характеристики контактов
Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток $\left(I_{N} / I_{\max }\right)$ А
Ном. напряжениеМакс. напряжение $\left(U_{N} / U_{\max }\right)$ В ~
$\begin{array}{ll}\text { Номинальная нагрузка AC1 } & \text { BA } \\ \text { Номинальная нагрузка AC15 (230 B ~) } & \text { BA }\end{array}$
Ном. мощность (230 B) потр. ламп: накаливания ВТ

скомпенсированные люминесцентные ВТ	750		750
некомпенсированные люминесцентные ВТ	1,000		1,000
галогенная ВT	2,000		2,000
Мин. нагрузка на переключение мВт (В/мA)	1,000 (10 / 10)		1,000 (10 / 10)
Стандартный материал контакта	AgSnO_{2}		AgSnO_{2}
Напряжение питания			
Номин. напряж. (U_{N}) V AC (50/60 Гц)	24	110... 230	230
DC	24	-	-
Ном. мощн. $\quad \mathrm{BA}(50$ Гц)/Вт	2.5 / 0.9		5.2 / 2
Рабочий диапазон V AC (50 Гц)	16.8... 28.8	90... 260	(0.8 ..1.1) U_{N}
DC	16.8... 32	-	-
Технические параметры			
Электр. договечность при ном. нагрузке AC1 циклов	$100 \cdot 10^{3}$		$100 \cdot 10^{3}$
Задание порога: Станд. диапазон лк	1... 100		1... 80
Выс. диап. лк	-		30..1,000
Гистерезис (коэффиц. перекл. Вкл/Выкл)	1.25		1
Время задержки ВКЛ/ВЫКЛ с	15 / 30		15 / 30
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-20...+50		-20...+50
Категория защиты: фото-реле/фото-элемент	IP 20 / IP 54		IP 20 / IP 54
Сертификация (в соответствии с типом)	$C \in \mathbb{H}$		

11 Серия - Фото-реле 12-16 A

Характеристики

Реле для автоматического управления освещением в зависимости от уровнн внешней освещенности с отдельным фотоэлектрическим сенсором
11.42-1 CO + 1 NO 12 А выходные контакты

Два независ. вых. с индивид. заданием освещенности 4-позиционный селектор:

- Станд. диап. (пороговые значения $1 . . .80$ лк) Высокий диап.(пороговые значения 20... 1,000 лк) - Постоянный свет (полезно при установке, начальном тестировании и при ремонте)
- Свет выкл (полезно при долгом отсутствии)

Для первых 6 рабочих циклов (вместе для каналов 1 и 2) время задержки (Вкл и Выкл) уменьшено до 0 дла правильной установки устройства Светодиодная индикация статуса
11.91-1 СО 16 А выходной контакт
(+ вспомог. выход длн Силового модулғ) Функция ежедневного смены времени - программируемо для блокирования осн. вых (энергосбрер.) Вспом. вых. - непоср. управляется фотоэлем. Итальянский патент - Технология "компенсация по свету"
Регулировка уровня чувствительности 2... 150 лк ЖК отобр. статус, настройка и программир.
Внутренняя батарен для настройки/программир. без кабеля питания и для восстановления вре мени/программы в случае сбоя напряж. питания (5 лет)

Изолация SELV для цепей контактов и питания Двойнан изоляция между питанием и фотосенсором Установка на 35 мм рейку (EN 60715)
Материал контактов - бескадмиевый
Бескадмиевый фото-сенсор (IC фото-диод)

* 11.91 вспомог. выход: 12 В, 1 Вт макс. См. чертеж на стр. 8

Характеристики контактов

Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток $\left(I_{N} / I_{\text {max }}\right)$ А
Ном. напрнжениеМакс. напряжение ($\mathrm{U}_{\mathrm{N}} / \mathrm{U}_{\max }$) B ~
Номинальная нагрузка AC1 BA
Номинальная нагрузка АС15 (230 B ~) BA
Ном. мощность (230 B) потр. ламп: накаливания BT
скомпенсированные люминесцентные ВТ
некомпенсированные люминесцентные BT
Мин. нагрузка на переключение мВт (B/мA)

Стандартный материал Напряжение питания

Номин. напряж. (U_{N})	230	230
	-	-
Ном. мощн. BA (50 Гц)/Вт	7.4 / 2.8	6.6 / 2.9
Рабочий диапазон	(0.8 ...1.1) U_{N}	(0.8 ..1.1) U_{N}
	-	-
Технические параметры		
Электр. договечность при ном. нагрузке AC1 циклов	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Задание порога: Станд. диапазон лк	1... 80	2... 150
Выс. диап. лк	20...1,000	-
Гистерезис (коэффиц. перекл. Вкл/Выкл)	1.25	$\Delta=3$ лк
Время задержки ВКЛ/ВЫКЛ с	15 / 30	$25 / 50$
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-20...+50	$-20 \ldots+50$
Категория защиты: фото-реле/фото-элемент	IP 20 / IP 54	IP 20 / IP 54
Сертификация (в соответствии с типом)		

Информация по заказам

Пример: 11 серия фото-реле с переключением времени, 1 CO (SPDT) 16 А контакт, питание 230 В пер. тока.

Технические параметры

Схемы электрических соединений

Преимущество запатентованной схемы "Нулевого гистерезиса"
гарантирует надежное переключение без потерь энергии

Яркость природного света
Свет включен

Преимущество технологии "компенсация по свету":

Инновационная технология "компенсация по свету" позволяет избегать эффектов частых ламповых колебаний между Вкл и Выкл

Фото-реле, где контролируемое освещение не влияет на уровень освещенности, который улавливает сенсор

Станд. Фото-реле, где контрол. освещение влияет на уровень освешенности, который улавливает сенсор

Тип 11.41 и 11.91
Фото-реле с концепцией
"компенсация по свету"

пересчитанный порог выключения

Правильная работа - при усл., что сенсор экранирован от эффектов контролируемого переключения освещ. Вкл and Выкл

Неверная работа, где лампы работают циклически между
Вкл и Выкл, т.к. этот эффект был замечен сенсором

Функции серии 11.91

Все функции могут быть заданы с помощью джойстика на передней панели и потом будут отображены на дисплее.

Режим отображения

При нормальной работе и питании от источника переменного тока, отображается следующее:

- текущее время- текущий уровень освещенности (верхние деления)
- заданный уровень порога освещенности (нижние деления)
- статус Открыто/Закрыто выходных контактов 11-14
- Символ "месяца" (в том случае, если текущий уровень освщенности ниже, чем пороговый).

Он также показывает, что вспомогательный выход включен, несмотря на то, что главные выходные контакты 11-14 могут быть включены, в зависимости от хроно программы

- "хроно"-символ отображается, если время выключения активизировано.

Из режима отображ. можно перейти в режим программир. или настройки при коротком или долгом (>2c) нажатии соотв. по центру джойстика. Из режима отобр. также возможно войти в Основной режим, где (независимо от уровня освещ. и и хроно-программы) выходные контакты 11-14 принудительно переключены в сост. Вкл или Выкл долгим (>2 с) нажатаием на верхний или нижний сектора соотв. Далее отображается символ "руки". Долгое нажатие на противоположный сектор сбросит этот режим.

Режим программирования

В этом режиме можно задать пороговый уровень освещенности, активизировать и задать время Выкл, активиз. и задать время Вкл. Коротким нажатием на левый или правый сектор можно переходить от одного шага программы к другому (принимая заданные значения). На любом шаге программы можно изменнть набор значений коротким нажатием на верхний или нижний сектор джойстика. Долгое нажатие (>1 с) позволяет быстро увеличивать (уменьшать) значения. Короткое нажатие на центр джойстика возобновит режим отображения.

Режим настройки

В этом режиме можно задать текущий год, месяц, день, часы и минуты(в таком порядке) и для активизации европейского режима "Переход на летнее время",
Коротким нажатием на левый или правый сектор можно переходить от одного шага программы к другому (принимая заданные значения). На любом шаге программы можно изменять набор значений коротким нажатием на верхний или нижний сектор джойстика. Долгое нажатие (>1 () позволяет быстро увеличивать (уменьшать) значения. Короткое нажатие на центр джойстика возобновит режим отображения.
Замечание: прибор поставляется с заданным на заводе-изготовителе центральноевропейским временем и автоматическим переходом на летнее время.

Режим выключенного питания

Если реле не подключено к источнику AC 230 V , то устройство входит в режим отключенного питания и для гарантии продолжительной работы встроенной резервной батареи только часы остаются активными. Дисплей выключается и другие действия (включая измерение освещенности) не производятся.
Нажатием на джойстик в состоянии выключенного питания возможно "разбудить" устройство и войти в режим программирования или настройки (появится символ "штепсель"); если после 1 минуты устройство неактивно, то режим выключенного питания возобновляется.
Замечание: при отключенном питании, режим программирования или настройки потребляет больший ток, чем при подключенном питании, тем самым воздействую на заряд батареи.

Вспомогательный выход

Неизменное состояние выходов обеспечено на выводах Y1-Ү2 (номин. 12 В пост. тока, 80 мА 1 Вт макс.): может быть использовано с силовым модулем 19.91.9.012.4000 соединенным спец. 011.19 разъемом. Либо можно подключить реле (например, интерфейсный модуль 38-48-4С-58) при условии, что обмотка в пределах номинала и провод не преввышает длину 40 cm . Вспомог. выход управляется исключительно фотосенсором, вследствие этого независимо от переключателя. Основной контакт позволяет гибко управлять системой освещенности, как с помощью, так и без влияния функции переключения.

19.91 характеристики силового модуля

Контактная группа (конфигурация)	1 CO (SPDT)
Номинальный ток/Макс. пиковый ток $\quad \mathrm{I}_{\mathrm{N}} / \mathrm{I}_{\text {max }}$	$16 / 30 \mathrm{~A}(120 \mathrm{~A}-5 \mathrm{mc}$)
Ном. напряжение/Макс. напряжение $\quad \mathrm{U}_{N} / \mathrm{U}_{\text {max }}$	250 / 400 B AC
Номинальная нагрузка AC 1 (230 В пер. ток)	750 BA
Ном. мощность (230 B) потр. ламп: накаливания	$2,000 \mathrm{BT}$
скомпенсированные люминесцентные	750 BT
Номин. напряж. U_{N}	12 пост. ток
Внешний температурный диапазон	$-20 . . .+50^{\circ} \mathrm{C}$
Категория защиты	IP 20

11.31/41/42

Светодиод	Напряжение питания	Номер вых. контакта		
		11.41 / 11.42	11.31	
-	Выкл	Открыт	Открыт	
-	Вкл	Открыт	Открыт	
-1.	Вкл	Открыт (тактирование для закрыто вкл)	Открыт (тактирование для закрыто вкл)	
	Вкл	Закрыт	Закрыт	
-	Вкл	Закрыт (тактирование дли открыто вкл)	Закрыт (тактирование для открыто вкл)	
$\Perp \text { \\| }$	Вкл	Фиксированнан позиция (Вкл или Выкл на селекторе)	-	

Чертежи

11.31

Винтовой зажим

11.41

Винтовой зажим

19.91 (Силовой модуль для модели 11.91)

Винтовой зажим

11.42

Винтовой зажим

11.91

Винтовой зажим

$11.91+19.91$ силовой модуль
Винтовой зажим
 11 Серия - Фото-реле 12-16 А

Аксессуары

011.01

011.19

Адаптер для установки на панель (поставляется вместе с реле включения света) Ширина 35 мм $\mid 011.01$

2-полярный разъем (для силовых модулей серии 11.91 и 19.91)

Для прямого соединения 11.91 вспом. вых. ($\mathrm{Y} 1-\mathrm{Y} 2$) с 19.91 питанием ($\mathrm{A} 1-\mathrm{A} 2$)

$$
\text { Блок маркировок, для моделей } 11.31,11.41,11.42,19.91 \text {, пластик, } 72 \text { знака, } 6 \times 12 \text { мм }
$$

12 Серия - Реле времени 16 A

Характеристики

Механические реле с выдержкой времени - ежедневное задание времени *

- еженедельное задание времени **
- Тип 12.01-1 контакт 16 А СО (SPDT) ширина 35.8 мм
Тип 12.11-1 контакт 16 A NO (SPST-NO) ширина 17.6 мм
Тип 12.31-0000 суточное -
1 контакт 16 A CO (SPDT)
Тип 12.31-0007 недельное -
1 контакт 16 A CO (SPDT)
Минимальный временнной интервал: 14 (12.31-0007)
30 мин (12.01)
15 мин (12.11-12.31-0000)
* Одинаковая программа каждый день
** Разные программы длн каждого дня недели
Характеристики контактов
Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение
Номинальная нагрузка AC1
Номинальная нагрузка(230 B~) AC15 BA
Ном. мощность потр. ламп: накаливания (230 B) Вт
скомпенсированные люминесцентные (230 B) Вт
некомпенсированные люминесцентные (230 B) Вт
Мин. нагрузка на переключение мВт (B/мA)
Стандартный материал

Номин. напряж. $\left(\mathrm{U}_{\mathrm{N}}\right)$	$\mathrm{VAC}(50 / 60$ Гц)
	V DC
Ном. мощн. $\mathrm{AC} / \mathrm{DC}$	$\mathrm{BA}(50$ Гц)/BT
Рабочий диапазон	$\mathrm{AC}(50$ Гц $)$

Технические параметры
Электр. договечность при ном. нагрузке AC1 циклов
Тип реле времени

| Интервалы переключения / день |
| :--- | :--- |
| Минимальный интервал мин |

Точность	сек/день

Внешний температурный диапазон $\quad{ }^{\circ} \mathrm{C}$

Категория защиты
Сертификация (в соответствии с типом)

12.01 - Мехническое суточное реле времени - 1 перекидной контакт CO (SPDT) - Установка на 35 мм рейку (EN 60715)	12.11 - Мехническое суточное реле времени - 1 NO (SPST-NO) - Установка на 35 мм рейку (EN 60715)	- Механическое суточное или недельное реле времени - 1 перекидной контакт CO (SPDT) - Установка на лицевую панель
1 CO (SPDT)	1 NO (SPST-NO)	1 CO (SPDT)
16/-	16/30	16/-
250/-	250/-	250/-
4,000	4,000	4,000
750	420	420
2,000 (NO контакт)	2,000	2,000
750 (NO контакт)	750	750
1,000 (NO контакт)	1,000	1,000
2,000 (NO контакт)	2,000	2,000
1,000 (10/10)	1,000 (10/10)	1,000 (10/10)
AgCdO	AgCdO	AgCdO
230	230	120-230
-	-	-
2/-	2/-	2/-
$(0.85 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.85 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.85 \ldots 1.1) U_{N}$
-	-	-
$50 \cdot 10^{3}$	$50 \cdot 10^{3}$	$50 \cdot 10^{3}$
ежедневно	ежедневно	ежедневно еженедельно
48	96	96 24 (168/неделя)
30	15	15 60
1.5	1.5	1.5
$-5 \ldots+50$	$-5 \ldots+50$	$-10 \ldots+50$
IP 20	IP 20	IP 20
CE	PG	CE

(1) finder

12 Серия - Реле времени 16 A

Характеристики

Электронные цифровые реле с выдержкой времени

- еженедельное задание времени

Тип 12.21-1 контакт 16 А СО (SPDT) 35.8 мм ширина

Тип 12.22-2 контакта 16 А СО (DPDT) 35.8 мм ширина

Тип 12.71-1 контакт 16 А СО (SPDT) 17.6 мм ширина

Работает при 230 в перем. тока или 12,
24 В пост./пер. тока
Минимальный интервал - 1 минута
Встроееный аккумулятор для автономной работы
Функция импульсного вых. сигнала: - 1с... 59: 59(мс:мкс)

Автоматическая регулировка для экономии энергии в дневное время Установка на 35 мм рейку (EN 60715)

Характеристики контактов
Контактная группа (конффигурация)
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение B

Номинальная нагрузка AC 1	BA
Номинальная нагрузка $(230 \mathrm{~B} \sim) \mathrm{AC} 15$	BA

Ном. мощность потр. ламп: накаливания (230 B) В т
скомпенсированные люминесцентные (230 B) Вт
некомпенсированнье люминесцентные (230 B) Вт
Мин. нагрузка на переключение мВт (B/мA)

Стандартный материал контакта

Напряжение питания

Номин. напряж. (U_{N})	-	120-230	-	120-230	-	230
	12-24	-	24	-	24	-
Ном. мощн. AC/DC $\quad \mathrm{BA}(50$ Гц)/Вт	1.4/1.4	2/-	1.4/1.4	2/-	1.4/1.4	2/-
Рабочий диапазон	$(0.9 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.85 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.9 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.85 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.9 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.85 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
	$(0.9 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	-	$(0.9 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	-	$(0.9 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	-
Технические параметры						
Электр. договечность при ном. нагрузке АС1 циклов	$50 \cdot 10^{3}$		$50 \cdot 10^{3}$		$50 \cdot 10^{3}$	
Тип реле времени	еженедельно		еженедельно		еженедельно	
Ачейки памяти для времени переключения *	30		30		30	
Минимальный интервал мин	1		1		1	
Точность сек/день	1.5		1.5		1.5	
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	$-30 \ldots+55$		$-30 \ldots+55$		$-30 \ldots+55$	
Категория защиты	IP 20		IP 20		IP 20	
Сертификация (в соответствии с типом)	$C E P G$					

* Ячейки памяти для времени переключения можно использовать более одного раза, например для разных дней недели.

Характеристики

Электронные цифровые реле с выдержкой времени

- еженедельное задание времени

Тип 12.91... 0000 "ZENITH"
1 контакт 16 А СО (DPDT)
35.8 мм ширина

Тип 12.91... 0090 "ZENITH"
1 контакт 16 А СО (DPDT)
35.8 мм ширина

Версия с Картой памяти (в комплекте) программируемой с помощью ПК
Тип 12.92 "ZENITH"
2 контакта 16 А СО (DPDT)
35.8 мм ширина

Программа астрологического времени Astro: расчет восхода и захода солнца по дате, времени и местоположению (широта и и долгота)
Функция компенсации времени: позволяет программировать время переключения реле в соответствии с астрологическим временем
Минимальный интервал - 1 минута
Встроенный аккумулятор для автономной работы
Автоматическая регулировка для экономии энергии в дневное время Установка на 35 мм рейки (EN 60715)

Характеристики контактов
Контактная группа (конфигурация)
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение
$\begin{array}{ll}\text { Номинальная нагрузка } \mathrm{AC} 1 & \mathrm{BA} \\ \text { Номинальная нагрузка(230 B~) AC15 } & \mathrm{BA}\end{array}$
Ном. мощность потр. ламп: накаливания (230 B) Вт
скомпенсированные люминесцентные (230 B) Вт
некомпенсированные люминесцентные (230 B) Вт
галогенная (230 B) Вт
Мин. нагрузка на переключение мВт (B/мA)
Стандартный материал контакта
Напряжение питания

Номин. напряж. $\left(\mathrm{U}_{\mathrm{N}}\right)$	$\mathrm{VAC}(50 / 60$ Гц)
Ном. мощн. AC/DC	$\mathrm{BA}(50$ Гц)/Вт
Рабочий диапазон	$\mathrm{AC}(50$ Гц $)$

Технические параметры
Электр. договечность при ном. нагрузке АС1 циклов
Тип реле времени
Ячейки памяти для времени переключения *
Минимальный интервал
Точность
Внешний температурный диапазон

Категория защиты
12.91... 0000

Цифровое недельное реле времени

- перекидной контакт СО (DPDT)
Установка на 35 мм рейку

Цифровое недельное реле времени
1 перекидной контакт СО (DPDT)
Версия с Картой памяти, программируемой с помощью ПК
Установка на 35 мм рейку

Цифровое недельное реле времени
2 перекидных контакт СО (DPDT) Установка на 35 мм рейку

12 Серия - Реле времени 16 A

Информация по заказам

Пример: механическое реле с выдержкой времени 12 серии, с ежедневной настройкой, 1 перекидной контакт CO (SPDT) 16 A, напряжение питания 230 В переменного тока.

Технические параметры

Изоляция	12.01, 12.11, 12.31		12.21, 12.22, 12.71, 12.91, 12.92	
Электр. прочность между откр. контактами				
V AC	1,000		1,000	
Прочее	12.01, 12.11, 12.31		12.21, 12.22, 12.71, 12.91, 12.92	
Резервный источник питания	70 ч (после предварительной 80 ч непрерывной зарядки)		6 лет	
Потери мощности				
без нагрузки Вт	1.5		2	
при нормальном токе Вт	2.5		3 (для 1 контакта)	4 (для 2 контактов)
(4ㅏ) Момент завинчивания Hm	1.2		1.2	
Макс. размер провода	одножильный кабель	многожильный кабель	одножильный кабель	многожильный кабель
mm^{2}	1x6 / 2x4	1x6 / 2x2.5	1x6/2x4	1x6 / 2x2.5
AWG	1x10 / 2x12	1x10 / 2x14	1x10/2x12	1x10/2x14

Схемы электрических соединений

Схемы электрических соединений

Аксессуары

Комплект для программирования с помощью ПК для типа 12.71, 12.91.8.230.0090|012.90
Этот специальный комплект для программирования с помощью ПК позволяет быстро и без ошибок вводить расписания. Ввод программы расписаний возможен с помошью карты памяти (в комплекте с 12.91.8.230.0090), или напрямую в реле времени 12.71.
Комплект: Адаптер для программирования, кабель USB (длина 1,8м), П/О.

Программа для с ввода расписаний помощью ПК

Простая программа для планирования и ввода расписаний для реле времени. Для Windows 2000/XP/Vista.

13 Серия - Электронные шаговые/моностабильные и вызывные реле с возвратом

Характеристики

13.01 - Электронные шаговые/ моностабильные реле, бесшумная работа, 1 выходной контакт
13.12 - Вызывное реле с возвратом, 2 выходных контакта

- Выбор режима: пошаговые перекл., моностабиьный режим (тип13.01)
Вызывные реле с возвратом подходят для жилых и коммерческих помещений: душевые, больница, отель (тип 13.12)
Возможность непрерывной подачи управл. BX. сигнала
Увеличенная механическая и электрическая долговечность, уровень шума ниже, чем у электромех. импульсных реле
Возможность применения в SELV системах согласно требованиям IEC 364, (тип 13.01)
- Тип 13.01 возможно использовать также при напряжении 12 и 24 V AC/DC
Тип 13.12 возможно использовать только при напряжении 24 V AC
- Установка на 35 мм рейку (EN 60715)

Материал контактов - бескадмиевый (тип 13.01)

* Для версии 24 В $\cup_{\max }=33.6$ В
** Только в течение импульса.

Характеристики контактов		
Контактная группа (конфигурация)	1 CO (SPDT)	1 CO (SPDT) + 1 NO (SPST-NO)
Номинальный ток/Макс. пиковый ток A	16/30 (120 A - 5 Mc)	8/15
Ном. напряжение/Макс. напряжение В~	250/400	250/400
Номинальная нагрузка AC1 BA	4,000	2,000
Номинальная нагрузка(230 B~) AC15 BA	750	400
Ном. мощность потр. ламп: накаливания (230 B) Вт	2,000	800
скомпенсированные люминесцентные (230 В) Вт	750	250
некомпенсированные люминесцентные (230 В) Вт	1,000	400
галогенная (230 В) Вт	2,000	800
Мин. нагрузка на переключение мВт (B/mA)	1,000 (10/10)	300 (5/5)
Стандартный материал контакта	AgSnO_{2}	AgCdO
Напряжение питания		
Номин. напряж. (U_{N}) V AC (50/60 Гц)	12-24*-110...125-230... 240	12-24
V DC	12-24 *	12-24
Ном. мощн. AC/DC $\quad \mathrm{BA}(50$ Гц)/Вт	2.5/2.5	3/2.5 **
Рабочий диапазон $\mathrm{AC}(50$ Гц)	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
DC	$(0.9 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
Технические параметры		
Электр. договечность при ном. нагрузке АС1 циклов	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Максимальная длительность импульса	непрерывно	непрерывно (100 мс минимальной)
Электрическая открытыми контактами В~	1,000	1,000
прочность между: контакты - питания В~	4,000	2,000
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-10...+60	$-10 \ldots+60$
Категория защиты	IP 20	IP 20
Сертификация (в соответствии с типом)	$C \in P G$	CEPG

13 Серия - Электронные шаговые/моностабильные и вызывные реле с возвратом

Характеристики

13.81 - Бесшумная работа - электронные шаговые реле
Монтаж на DIN-рейку - 1 выходной контакт
13.91 - Бесшумная работа - электронные шаговые реле и шаговые реле с таймером (10 мин)

- 3- или 4-проводное подключение, с индикацией режима работы
Возможность непрерывной подачи управл. Bx. сигнала
Увеличенная механическая и электрическая долговечность, уровень шума ниже, чем у электромехан. импульсных реле
Может быть установлен за гасящими пластинами. Широко используетсн в жилых проводных системах таких, как BTicino: Axolute, Matix, Living и Magic, Gewiss: GW24, Vimar: Plana и Idea .. (Тип 13.91)
- Выводы в виде колодок (тип 13.81 и 13.91) "Пересечение 0 уровня" при переключении (тип 13.81 и 13.91)
- Установка на 35 мм рейку(EN 60715) или фланец
- Материал контактов - бескадмиевый

2

Информация по заказам

Пример: 13 серия, электронное шаговое/моностабильное реле, установка на 35 мм рейку (EN 60715), 1 перекидной контакт CO (SPDT) 16 A, питание 230 В переменного тока.

Серия

тип
$0=$ Шаговое/ моностабильное, установка на 35 мм рейку (EN 60715), ширина 35 мм
1 = Вызывное реле с возвратом, установка на 35 мм рейку (EN 60715) , 17,5 мм ширина
$8=$ Модульное шаговое реле, установка на 35 мм рейку (EN 60715) , 17,5 мм ширина
$9=$ Шаговое реле и шаговое реле с таймером, монтаж в распределительной коробке

Кол-во контактов

1 = 1 контакт
$2=1$ перекидной контакт CO (SPDT) +1 NO (SPST-NO)

$012=12 \mathrm{~V}$ AC/DC (только тип 13.01 и 13.12)
$024=24 \mathrm{~V} \mathrm{AC/DC}$ (только тип 13.01 и 13.12)
$125=(110 \ldots 125) \mathrm{V}$ AC (только тип 13.01)
$230=\langle 230 . .240) \vee \mathrm{AC}$ (только тип 13.01)
$230=230 \mathrm{~V} \mathrm{AC}$ (только типы 13.81 и 13.91)
Источник тока
$0=\mathrm{AC}(50 / 60$ Гц)/DC
(только для 13.01.0.012, 13.01.0.024 и 13.12.0.012)
$8=A C(50 / 60$ Гц)

Технические данные

Изоляция	13.01.8	13.01 .0		13.12		13.81-13.91		
Электрическая прочность между цепью управления и питанием B~	4,000	-		-		-		
между цепью управления и контактами В~	4,000	4,000		-		-		
между R-S-A2 и контактами B~	-	-		2,000		-		
между питанием и контактами B~	4,000	4,000		-		-		
между открытыми контактами $\quad \mathrm{B} \sim$	1,000	1,000		1,000		1,000		
Прочее	13.01			13.12		13.81		13.91
Потери мощности при нормальном токе	2.2			-		1.2		0.7
без нагрузки Вт	3.5			1.5		2		1.8
Макс. длина кабеля для соедин. с кнопкой м	100			100		200		100
Макс. число кнопок с подсветкой (≤ 1 мА)	-			-		15		12
Выводы	13.01			13.12-13.81-13.91				
Макс. размер провода	одножильный		многожильный	одножильный			многожильный	
MM ${ }^{2}$	1x6/2x4		1x6 / 2x2.5	1x6/2x4			1x4/2x2.5	
AWG	$1 \times 10 / 2 \times 12$		1x10/2x14	1x10/2x12			1x12	2x14
(44) Момент завичивания Nm	0.8			0.8				

Функции

Настройка режима работы для реле 13.91

a) Отключить электропитание
b) Нажать кнопку Управление
c) Включить электропитание, при нажатой кнопке Управление. Через 3 секунды, светодиод вспыхнет 2 раза для индикации функции "IT", или 1 раз для функции "RI"

13 Серия - Электронные шаговые/моностабильные и вызывные реле с возвратом

Схемы электрических соединений (13.01 и 13.12)

Тип 13.12
Вызывное реле с возвратом

13 Серия - Электронные шаговые/моностабильные и вызывные реле с возвратом

Схемы электрических соединений (13.81 и 13.91)

Аксессуары

Адаптер для монтажа на панель, для типа 13.01; ширина 35 мм

Адаптер для монтажа на панель, для типа 13.12 и 13.81; ширина 17.5 мм 020.01
020.01

14 Серия - Лестничные таймеры 16 A

Характеристики

Серия электронных таймеров

 отключения освещения на лестницах- 17.5 мм ширина
- Установка времени от 30 сек до 20 мин
- "Пересечение 0 уровня" при переключении
. "Выключение раннего предупреждения" модель 14.01
- Предназначены для 3- или 4-проводных систем с автоматическим распознаванием (14.01 и 14.71) или с помощью "кнопки конфигурации" (14.81)
Индикация состояния с помощью светодиодов (14.01 и 14.71)
- Материал контактов - бескадмиевый

Возможно использование с подсвечиваемыми кнопками
"Шлиц + крест" - отвертки на шлиц и на крест могут быть использованы для настройки функций селектора, тактового конденсатора и для отсоединения 35 мм реечной монтажной скобы
Европейский патент

Характеристики контактов
Контактная группа (конфигурация)

Номинальный ток/Макс. пиковый ток А	16/30 (120 A - 5 mc)	16/30 (120 A - 5 Mc)
Ном. напряжение/Макс. напряжение В~	230/-	230/-
Номинальная нагрузка AC1 BA	3,700	3,700
Номинальная нагрузка(230 B~) AC15 BA	750	750
Ном. мощность потр. ламп: накаливания (230 В) Вт	3,000	3,000
скомпенсированные люминесцентные (230 В) Вт	1,000	1,000
некомпенсированные люминөсцентные (230 В) Вт	1,000	1,000
галогенная (230 В) Вт	3,000	3,000
Мин. нагрузка на переключение мВт (B/mA)	1,000 (10/10)	1,000 (10/10)
Стандартный материал контакта	AgSnO_{2}	AgSnO_{2}
Напряжение питания		
Номин. напряж. (U_{N}) V AC (50/60 Гц)	230	230
V DC	-	-
Ном. мощн. BA (50 Гц)/Вт	3/1.2	3/1.2
Рабочий диапазон AC (50 Гц)	(0.8...1.1) U_{N}	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
DC	-	-
Технические параметры		
Электр. договечность при ном. нагрузке AC1 циклов	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Установка задержки мин	0.5... 20	0.5... 20
Макс. число подсвчиваемых кнопок (≤ 1 мА)	30	30
Макс. длительность импульса	непрерывно	непрерывно
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-10...+60	$-10 \ldots+60$
Категория защиты	IP 20	IP 20
Сертификация (в соответствии с типом)	$C \in P G \text { (1) NF } \Delta$	

14 Серия - Лестничные таймеры 16 A

Характеристики

Серия электронных таймеров

 отключения освещения на лестницах- 17.5 мм ширина
- Установка времени от 30 сек до 20 мин
" "Пересечение 0 уровня" при переключении Типы 14.81 и 14.91: проводка совместима wс механическими версиями и со старым типом(низк. излучение) подсвечиваемых кнопок
Подходят для 3- или 4-проводных систем с автоматическим распознаванием (14.01 и 14.71) или с помощью "кнопки конфигурации" (14.81)
Материал контактов - бескадмиевый
Возможно использование с подсвечиваемыми кнопками
"Шлиц + крест" - отвертки на шлиц и на крест могут быть использованы для настройки функций селектора,тактового конденсатора и для отсоединения 35 мм реечной монтажной скобы.

14.91

Однофункциональные - 1 NO (SPST-NO)

Установка на 35 мм рейку
(EN 60715)

- 3 клеммы с одной стороны

Характеристики контактов
Контактная группа (конфогурация)

Информация по заказам

Пример: Многофункциональное реле 14 серии, 1 однофазный контакт переключатель NO (SPDT-NO) 16 A, питание 230 В пер. тока.

Технические параметры

Изоляция			
Электр. прочность между откр. контактами	V AC	1,000	
Прочее			
Потери мощности			
без нагрузки	W	1.2	
при нормальном токе	W	2	
Максимальная длина кабеля для соединения с кнопкой	m	200	
(7)t Момент завинчивания	Nm	0.8	
Макс. размер провода		одножильный кабель	многожильный кабель
	mm^{2}	1x6/2x4	1x4/2x2.5
	AWG	$1 \times 10 / 2 \times 12$	1x12/2x14

Пересение нулевого уровня при переключении

1. Понижение пускового тока помогает защитить лампу и продлить срок ее службы
2. Понижение пускового тока способствует снижению вероятности приваривания контакта
3. В выключенном состоянии ток также понижается,уменьшая нагрузку и продлевая срок службы контактов

Замечание

При использовании типа 14.91 лампы включаются непосредственно кнопкой включения

Аксессуары

Адаптер для монтажа на панель, 17.5 мм ширина

Схемы электрических соединений

Тип 14.01
 14.71

Индикация с помощью
Красного светодиода:
Мигает = реле ВЫКЛ
Постоянно = реле ВКЛ

3-проводное соединение

4-проводное соединение

Тип 14.81 (Кнопка конфигурации не требуется, в соответствии с инструкцией по установке)

3-проводное соединение

4-проводное соединение

Тип 14.91 (кнопки должны быть рассчитаны на ток нагрузки)

Схемы электрических соединений варианты подключения 14.01 с пассивными датчиками движения (18 серии).

3-проводное соединение (только с 18.21.8.230.0300 или 18.31.8.230.0300 only)

L

4-проводное соединение (с 18.01.8.230.0000, 18.11.8.230.0000, 18.21.8.230.0300 или 18.31.8.230.0300)

L

L

Функции

Тип 14.01 Указанные ниже функции выбираются двухпозиционным переключателем

(ВЕ) Лестничное репе

При начальном импульсе выходной контакт закрывается и, в соответствии с заданным временем начинается отсчет; при последующих импульсах период времени будет увеличен.
По истечении времени задержки выходной контакт закрывается.

(BP) Лестничное релес ранним оповещением

При начальном импульсе выходной контакт закрывается и, в соответствии с заданным временем начинается отсчет.
После окончания заданного времени выходной контакт мигает 1 раз; через 10 сек контакт мигает дважды, а еще через 10 сек контакт открывается. В течении заданного времени и времени оповещения - 20 сек., при очередном импульсе возможно увеличение времени на время установки.

(IT) Импульсное реле времени

При начальном импульсе выходной контакт закрывается и, в соответствии с заданным временем начинается отсчет; По истечении времени задержки выходной контакт открывается. В течении заданного времени, при очередном импульсе возможно мгновенное открытие контакта.

(IP) Импульсное реле времени с ранним оповещением
При начальном импульсе выходной контакт закрываетсн и, в соответствии с заданным временем начинается отсчет; после окончания заданного времени выходной контакт мигает 1 раз; через 10 сек контакт мигает дважды, а еще через 10 сек контакт открывается. В течение заданного времени и времени оповещения - 20 сек., при очередном импульсе, возможно мгновенное открытие контакта.

(RI) Импульсное реле

После каждого импульса выходной контакт меннет свое состонние, поочередно переключаясь на открытый и закрытый.
О. Освещение постоянно включено

При установке данной функции выходной контакт постоянно закрыт.

[^8]14 Серия - Лестничные таймеры 16 A

Функции

Тип 14.71 Указанные ниже функции выбираются с помощью переднего переключателя

Функция "Обслуживание лестничной клетки"
Импульс длительностью ≥ 5 секунд закроетвыходной контакт на 60 мин. По истечении данного времени контакт откроется. Это идеальный вариант для обслуживания лестничной клетки. 60 мин промежуток может быть прерван другим импульсом длительностью 5 сек и более.

\%. Освещение постоянно включено

При установке данной функции выходной контакт постоянно закрыт.

Тип 14.81

Лестничное реле

При начальном импульсе выходной контакт закрывается и в соответствии с заданным временем начинается отсчет; при последующих импульсах период времени будет увеличен на время установки По истечении времени задержки выходной контакт открывается.

Функция "Обслуживание лестничной клетки"
Импульс длительностью ≥ 5 секунд закроетвыходной контакт на 60 мин. По истечении данного времени контакт откроется. Это идеальный вариант для обслуживания лестничной клетки. 60 мин промежуток может быть прерван другим импульсом длительностью 5 сек и более; итак, после истечения врмени задержки выходной контакт снова открывается.

Тип 14.91

Импульс сигнала ВКЛ

При начальном импульсе выходной контакт закрывается, и остаетсяв таком состоянии на время предустановленной задержки. По истечении времени задержки выходной контакт открывается.

15 Серия - Электронное шаговое реле и Диммер

Характеристики

Электронное шаговое реле и Диммер для регулирования уровня освещенности

- Применяется для ламп накаливания и галогенных ламп (с/без трансформатора, с/без электронного источника питания)
- Версия совместима с энергосберегающими лампами (компактными люминесцентными или светодиодными) и всеми типами электромеханических трансформаторов, также в режиме без нагрузки (15.81)
- 3- или 4-проводное подключение
- "Плавный" ВКЛ и ВЫКЛ переходы
- Два режима работы: с/без запоминания предыдущего уровня освещенности
- Ступенчатое (15.51/15.61) или плавное (15.51/15.61/15.81) диммирование
- Термо защита против перегрузки
- Термо-предохранитель для защиты от перегрузки (15.81)
Питание 230 V AC, версии 50 или $60 Г ц$ (15.51/15.61)

Питание 230 V АС, 50/60Гц с автоматическим распознаванием частоты (15.81)

установка на панели или распред. коробке

- Максимальная нагрузка на лампу 400 Вт
- Многофункциональный
- Два различных типа для плавного или ступенчатого

15.61

17.5 mm ширина

Максимальная нагрузка на
лампу 500 Вт
Многофункциональный
17.5 mm ширина

Максимальная нагрузка на лампу 500 Вт
Многофункциональный Совместим с энергосберегающими лампами с диммированием

См. чертеж на стр. 6

Выходные данные
 Номинальное напряжение

Мощность макс. Bt	400	500	500
Мощность мин. Bt	10	5	3
Мощность ламп 230B: Лампы накаливания Вт	400	500	$500{ }^{(1)}$
Галогеновые лампы высокого напряжения Вт	400	500	$500{ }^{(1)}$
Тороидальные электромагнитные транссрорматоры для галогеновых ламп низкого напряжения Вт	400 (2)	$500{ }^{(3)}$	500 (4)
Электромагнитные транссрорматоры с сердечником для галогеновых ламп низкого напряжения Вт	-	-	$500{ }^{(4)}$
Электронные транссорматоры (дроссели) для галогеновых ламп низкого напряжения Вт	$400{ }^{(5)}$	500 (6)	$500{ }^{(1)}$
Компактныелюмминесценнные лампыс диммированием (CFL) Вт	-	-	100 (7)
Светодиодные лампы с диммированием W	-	-	100 (7)
Напряжение питания			
Номинальное напр. (U_{N}) V AC (50/60Гц)	$230{ }^{(8)}$	$230{ }^{(8)}$	230
Рабочий диапазон	(0.8...1.1) U_{N}	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
Резервное питание Вт	≤ 1	≤ 0.8	≤ 0.8
Технические параметры			
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50{ }^{(9)}$	$-10 \ldots+50{ }^{(10)}$	$-10 \ldots+50{ }^{(10)}$
Категория защиты	IP 20	IP 20	IP 20
Сертификация (в соответствии с типом)	CEPG	$C E$	CE

Примечания

(1) выбрать положение "incandescent lamp" [(лампа накаливания)] передним переключателем
(2) только один трансформатор, убедитесь, что он не работает без ламповой нагрузки
(3) один или два трансформатора, убедитесь, что они не работают без ламповой нагрузки
4) выбрать положение "transformer" [$\bar{\square} \downarrow$ (трансформатор)] передним переключателем. Предпочтительно, не более2-х трансформаторов
(5) только один трансформатор
(6) один или два трансформатора
(7) выбрать положение "CFL" [帯 (компактные люминесцентные лампы)] передним переключателем, и установить минимальный уровень дим мирования (в зависимости от типа ламп)
(8) доступна специфическая версия $60 Г ц$ (см инфо о заказе)
(9) не рекомендуется устанавливать несколько диммеров в один настенный щит, в случае, если не обеспечена адекватная вентиляция или ламповая нагрузка менее 100Вт
(10) для ламповых нагрузок >300 Вт, следует обеспечить адекватную вентиляцию, рекомендуется зазор 5 мм с каждой стороны от диммера

Не совместимо с подсвечиваемыми кнопками.

Информация по заказам

Пример: тип 15.51, электронное шаговое реле и диммер, 230 В пер. тока.

Коды

15.51.8.230.0400 ступенчатое диммирование
15.51.8.230.0404 плавное диммирование
15.51.8.230.0460 ступенчатое диммирование, 60 Hz
15.61.8.230.0500 ступенчатое и плавное диммирование
15.61.8.230.0560 ступенчатое и плавное диммирование, 60 Hz
15.81.8.230.0500 плавное диммирование, $50 / 60 \mathrm{~Hz}$

Технические параметры

Тип проверки		Ссылка на стандар	15.51	15.61	15.81
Электростатический разряд	контактный разряд	EN 61000-4-2	4 kV		
	воздушный разряд	EN 61000-4-2	8 kV		
Электромагнитное поле РЧ-диапазона ($80 \ldots 1,000 \mathrm{MHz}$)		EN 61000-4-3	$3 \mathrm{~V} / \mathrm{m}$	$3 \mathrm{~V} / \mathrm{m}$	$3 \mathrm{~V} / \mathrm{m}$
Быстрый переходный режим (разрыв)на клеммах питания		EN 61000-4-4	4 kV	2 kV	4 kV
(5-50 нс, 5 и 100 кГц)	при подключении кнопки	EN 61000-4-4	4 kV	2 kV	4 kV
Импульсы (1.2/50 мкс) на клеммах питания		EN 61000-4-5	2 kV	2 kV	2 kV
Напряжение общего РЧ-режима$(0.15 \ldots . .80 \mathrm{MHz})$	на клеммах питания	EN 61000-4-6	3 V	3 V	3 V
	при подключении кнопки	EN 61000-4-6	3 V	3 V	3 V
Радиочастотные кондуктивные излучения $0.15 \ldots 30 \mathrm{MHz}$		EN 55014	класс В		
Радиационные излучения $30 . .1,000 \mathrm{MHz}$		EN 55014	класс В		
Прочее		одножильный кабель		многожильный кабель	
Макс. размер провода	$M M^{2}$	$1 \times 6 / 2 \times 6$		$1 \times 6 / 2 \times 4$	
	AWG	$1 \times 10 / 2 \times 10$		$1 \times 10 / 2 \times 12$	
(다) Момент завинчивания Нм		0.8			
Длина зачистки провода мм		9			
Прочее		15.51	15.61		15.81
Потери мощности	без нагрузки Вт	0.7	0.8		0.5
	при нормальном токе Вт	2.2	2.4		2.6
Максимальная длина кабеля для соединения с кнопкой m		100	100		100

15 Серия - Электронное шаговое реле и Диммер

Термо-защита и сигнализация

Светодиод (только тип 15.61/15.81)	Напряжение питания	Термо защита
	Выкл	-
	Вкл	-
	Вкл	Сигнал неиспр.

Режимы работы (тип 15.51/15.61)

.51...0		Режим работы 1 (с запоминанием): запоминается предыдущий уровень освещенности (режим по умолчанию). Продолжительный управляющий импульс: Уровень освещенности постепенно поднимается или уменьшается (пошагово, до 10 шагов). Короткий управляющий импульс: переключение между положениями ВКЛ и ВЫКЛ. При включении уровень освещенности устанавливается таким же, каким был при последнем включении.
$\begin{array}{r}15.51 \ldots 0 \\ \hline 15.61\end{array}$		Режим работы 2 (без запоминания): при выключении уровень освещенности не запоминается. Продолжительный управляющий импульс: Уровень освещенности постепенно поднимается или уменьшается (пошагово, до 10 шагов). Короткий управляющий импульс: переключение между сотоянием максимальной освещенности иВЫКЛ.
стройка Плавное диммирование		
$\begin{array}{r}15.51 \ldots 0 \\ \\ \hline 15.61\end{array}$		Режим работы 3 (с запоминанием): запоминается предыдущий уровень освещенности. Продолжительный управляющий импульс: Уровень освещенности постепенно поднимается или уменьшается Короткий управляющий импульс: дпереключение между положениями ВКЛ и ВЫКЛ. При включении уровень освещенности устанавливается таким же, каким был при последнем включении.
$15.51 \ldots 0404$ 15.61		Режим работы 4 (без запоминания): при выключении уровень освещенности не запоминается. Продолжительный управляющий импульс: Уровень освещенности постепенно поднимается или уменьшается Короткий управляющий импульс: переключение между положениями ВКЛ и ВЫКЛ для максимального уровня освещенности и режима Выкл., соответственно

Выбор режима работы

Тип 15.51

У типа 15.51 по умолчанию задан режим работы 1. Нужный режим работы выбирается следующим образом:
a) отключите питание;
b) нажмите кнопку управления;
c) включите питание реле, удерживая кнопку нажатой в течение 3 секунд;
d) После того, как кнопка отпущена, светодиод мигнет дважды, указывая на выбор режима работы 2 , или один раз (режим работы 1).
Повторяя указанные выше действия, можно попеременно выбирать режим работы.

Тип 15.61

Для 15.61 можно выбрать нужный режим работы 1, 2, 3 или 4 с помощью селектора на передней панели

Режимы работы (тип 15.81)

Схемы электрических соединений

Примечание: Следует позаботиться о хорошем заземлении для ламп 1 класса.

Тип 15.51-4-проводное соединение

Тип 15.61-4-проводное соединение

Тип 15.81-3-проводное соединение

Аксессуары

15.51

Винтовой зажим

15.81

Винтовой зажим
回

15.61

Винтовой зажим

Аксессуары

Блок маркировок для типа 15.61/15.81, пластик, 72 знаков, 6×12 мм
060.72

$$
\text { Адаптер для монтажа на панель для типа 15.61/15.81, } 17.5 \text { мм ширина } 00.011
$$

6

Характеристики

ПИК детектор движения для установки снаружи и в помещении

- Малый размер

- Регулируемый порог воздейсвия внешнего освешения
- Регулируемая длительность импульсов - Универсальное положение установки позволяет выбрать любое место для осмотра
Широкий угол обзора

18.01

18.11

18.01

- Установка в помещении - Подходит для настенного монтажа

18.11

- 1 NO (SPST-NO) 10 A Наружння установка - Подходит для настенного монтажа

18.01
18.11

Характеристики контактов

Количество контактов
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение
Номинальная нагрузка AC1 BA

Номинальная нагрузка AC15 (120/230 B) BA	250	450	250	450
Ном. мощность потр. ламп: накаливания (120/230 В) Вт	500	1,000	500	1,000
скомпенсированные люминесцентные (120/230 В) Вт	200	350	200	350
некомпенсированные люминесцентнье (120/230 В) Вт	250	500	250	500
галогенная (120/230 В) Вт	500	1,000	500	1,000
Стандартный материал контакта	AgSnO_{2}		AgSnO_{2}	
Характеристики обмотки				
Номин. напряж. B AC (50/60 Гц)	120... 230		120... 230	
DC	-		-	
Ном. мощн. AC/DC BA (50 Гц)/W	2.5/-		2.5/-	
Рабочий диапазон В ${ }^{\text {AC }(50 / 60 ~ Г ц) ~}$	96... 253		96... 253	
DC	-		-	
Технические параметры				
Электр. договечность при ном. нагрузке АС1 циклов	$100 \cdot 10^{3}$		$100 \cdot 10^{3}$	
Порог воздействия внешнего освещения лк	5... 350		5... 350	
Задержка перед угасанием	10 s... 12 мин		10 s... 12 мин	
Угол обзора	110°		110°	
Глубина полн м	10		10	
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-10...+50		-30...+50	
Категория защиты	IP 40		IP 54	
Сертификация (в соответствии с типом)	$C \in(1)$			

Характеристики

ПИК детектор движения для установки в помещении

Потолочный монтаж
Малый размер
Регулируемый порог воздейсвия внешнего освещения
Регулируеммая длительность импульсов Широкий угол обзора

Характеристики контактов
Количество контактов
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение
Номинальная нагрузка AC1 BA

Номинальная нагрузка AC15 (120/230 B) BA	250 450	250	450
Ном. мощность потр. ламп: накаливания (120/230 В) Вт	500 1,000	500	1,000
скомпенсированные люминесцентные (120/230 В) Вт	200 350	200	350
некомпенсированные люминесцентнье (120/230 В) Вт	250	250	500
галогеннан (120/230 В) Вт	500 1,000	500	1,000
Стандартный материал контакта	AgSnO_{2}	AgSnO_{2}	
Характеристики обмотки			
Номин. напряж. B AC (50/60 Гц)	120... 230	120... 230	
DC	-	-	
Ном. мощн. AC/DC BA (50 Гц)/W	2/1	2/1	
Рабочий диапазон В AC (50/60 Гц)	96... 253	96... 253	
DC	-	-	
Технические параметры			
Электр. договечность при ном. нагрузке АС1 циклов	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$	
Порог воздействия внешнего освещения лк	5... 350	5... 350	
Задержка перед угасанием	10 s... 12 мин	10 s... 12 мин	
Угол обзора	110°	110°	
Глубина поля м	См. диаграмму страницы 6	См. диаграмму страницы 6	
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-10...+50	$-10 \ldots+50$	
Категория защиты	IP 40	IP 40	
Сертификация (в соответствии с типом)	$C \in \oplus$		

18 Серия - Пассивный инфракрасный детектор движения 10 A

Характеристики

ПИК детектор движения для установки в помещении, с безпотенциальным контактом

- Приложения, где требуется интерфейс с PLC или BMS
Потолочный монтаж
Малый размер
Регулируемый порог воздейсвия внешнего освещения
Регулируеммая длительность импульсов Широкий угол обзора

Характеристики контактов
Количество контактов
Номинальный ток/Макс. пиковый ток
Ном. напряжение/Макс. напряжение
Номинальная нагрузка AC1 BA
Номинальная нагрузка AC15 (230 B) BA
Ном. мощность потр. ламп: накаливания (230 B) Bт
скомпенсированные люминесцентные (230 B) Вт
некомпенсированные люминесцентные (230 B) Вт
галогенная $(230$ В) Вт
Стандартный материал контакта
Характеристики обмотки

Номин. напряж. В AC (50/60 Гц)	120... 230	120... 230
В AC (50/60 Гц)/DC	24	24
Ном. мощн. AC/DC BA (50 Гц) W	2/1	2/1
Рабочий диапазон \quad B AC $(50 / 60$ Гц)	96... 253	96... 253
В AC (50/60 Гц)/DC	19.2...26.4	19.2...26.4
Технические параметры		
Электр. договечность при ном. нагрузке АС1 циклов	100-103 циклов	100. 10^{3} циклов
Порог воздействия внешнего освещения лк	5... 350 лк	5... 350 лк
Задержка перед угасанием	10 s... 12 мин	10 s... 12 мин
Угол обзора	110°	110°
Глубина поля м	См. диаграмму страницы 6	См. диаграмму страницы 6
Внешний температурный диапазон ${ }^{\circ} \mathrm{C}$	-10... 50	-10...+50
Категория защиты	IP 40	IP 40
Сертификация (в соответствии с типом)		

Информация по заказам

Пример: 18 серия, ПИК детектор для установки в помещениях, настенная установка, 1 контакт NO (SPST-NO) 10 A, 120... 230 B AC.

Технические параметры

Изоляция		
Электр. прочность между откр. контактами	VAC	1,000
Между электропитанием и контактом	$V A C$	1,500 (типы 18.21...0300, 18.31...0300)
Прочее		
(2f) Момент завинчивания	Hm	0.5
Макс. размер провода	MM ${ }^{2}$	1.5

- В случаях включения электропитания или скачков электропитания, в течение 30-ти секунд происходит аппаратно-программная инициализация детектора. Состояние выходного контакта в течение этих 30 -ти секунд зависит от:
- Если детектор был включен до отключения электропитания, и уровень освещенности в момент включения ниже заданного порога, тогда выходной контакт незамедлительно замкнется при подаче электропитания (независимо от фиксации движения). - Если детектор был выключен до отключения электропитания, и уровень освещенности в момент включения выше заданного порога, тогда при подаче электропитания выходной контакт не замкнется вплоть до окончания фазы инициализации 〈при условии фиксации движения).

Схемы электрических соединений

Тип 18.21-0300 / 18.31-0300

Тип 18.21 / 18.31

уровня освещенности
$2=$ длительность импульсов после последнего обнаружения

После того, как детектор обнаружил движение, выходное реле будет оставаться во включенном состоянии в течение заданного времени

Схемы электрических соединений - Параллельное подключение

Тип 18.01/18.11

Примечание: Соблюдайте полярность подключения для фазы и нейтрали
Тип 18.01 / 18.21

Примечание: Соблюдайте полярность подключения для фазы и нейтрали
Тип 18.21/18.31
L

Примечание: Соблюдайте полярность подключения для фазы и нейтрали

Установка

Зона распознавания

18.01, 18.11 - Настенный монтаж

Вид сбоку

Вид сверху
18.01 - Потолочный монтаж

18.11 - Потолочный монтаж

18.21, 18.31 - Установка в помещениях на потолок, открытая или скрыая установка

Одиночная установка

Групповая установка

Аксессуары

Ограничитель луча для пассивных инфракрасных детекторов движения 18.21 и 18.31 Уменьшает зону обзора до 2 м в диаметре (вместо 8 м) при установке на высоте 2.8 м.

[^0]: Модули индикации катушки и подавления электромагнитных помех
 В зависимости от типа модуля, обеспечивается:

 - Подавление ЭДС катушки при выключении
 - Светодиодная индикация подачи напряжения на катушку
 - Защита от обратной полярности на контактах катушки
 - Байпас для токов утеки для контура катушки

[^1]: 1 - Макс. Допустимое напряжение на катушке.
 2 - Мин. Напряжение удержания катушки при температуре окружающей среды.

[^2]: ** См. Основные технические характеристики "Руководство по автоматизации процессов пайки" стр II .

[^3]: * Только для приложений, в которых допускается категория перенапряжения II. Для приложений с категорией перенапряжения III:

[^4]: * S1 (светодиод 1 соответствует НО-контактам 11-14) и S2 (светодиод 1 соответствует НО-контактам 21-24) могут быть, например, НО-контакт для индикации режима Работа (выбор цвете светодиода - зеленый) или НЗ-контакт для индикации режима Неисправность или (выбор цвете светодиода - красный). Цвет светодиодов выбирается на обратной стороне модуля.

[^5]: Адаптер для монтажа на поверхность, для типов 19.31/32/41/50/91, пластик, ширина 17.5мм

[^6]: 1-"Холодное" состояние (температура окр.возд. $=23^{\circ} \mathrm{C}$, без включений в течении 15 мин.)
 2 - "Горячее" состояние (температура окр.возд. $=50^{\circ} \mathrm{C}$, выходной ток 5 A)

[^7]: Примечание: Диапазон времени и функцию надлежит задать до подачи питания на таймер.

[^8]: NПримечание: Мигание при функции раннего оповещения (BP и IP) может вызвать проблемы с повторным включением флуорисцентных ламп с электромагнитными дросселями (обычных и компактных типов). Настоятельно рекомендуется не использвать эти лампы с данной функцией.

